• This record comes from PubMed

Quantum dissipation driven by electron transfer within a single molecule investigated with atomic force microscopy

. 2020 Mar 12 ; 11 (1) : 1337. [epub] 20200312

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 32165626
PubMed Central PMC7067884
DOI 10.1038/s41467-020-15054-w
PII: 10.1038/s41467-020-15054-w
Knihovny.cz E-resources

Intramolecular charge transfer processes play an important role in many biological, chemical and physical processes including photosynthesis, redox chemical reactions and electron transfer in molecular electronics. These charge transfer processes are frequently influenced by the dynamics of their molecular or atomic environments, and they are accompanied with energy dissipation into this environment. The detailed understanding of such processes is fundamental for their control and possible exploitation in future technological applications. Most of the experimental studies of the intramolecular charge transfer processes so far have been carried out using time-resolved optical spectroscopies on large molecular ensembles. This hampers detailed understanding of the charge transfer on the single molecular level. Here we build upon the recent progress in scanning probe microscopy, and demonstrate the control of mixed valence state. We report observation of single electron transfer between two ferrocene redox centers within a single molecule and the detection of energy dissipation associated with the single electron transfer.

See more in PubMed

Hänggi P, Talkner P, Borkovec M. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 1990;62:251. doi: 10.1103/RevModPhys.62.251. DOI

Caldeira AO, Leggett AJ. Influence of dissipation on quantum tunneling in macrosososcopic systems. Phys. Rev. Lett. 1981;46:211. doi: 10.1103/PhysRevLett.46.211. DOI

Leggett AJ, et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 1987;59:1. doi: 10.1103/RevModPhys.59.1. DOI

Nitzan A, Ratner MA. Electron transport in molecular wire junctions. Science. 2003;3:1384–1389. doi: 10.1126/science.1081572. PubMed DOI

Joachim C, Gimzewski JK, Aviram A. Electronics using hybrid-molecular and mono-molecular devices. Nature. 2000;408:541–548. doi: 10.1038/35046000. PubMed DOI

Brédas JL, Beljonne D, Coropceanu V, Cornil J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 2004;104:4971–5004. doi: 10.1021/cr040084k. PubMed DOI

Zhang J, et al. Single-molecule electron transfer in electrochemical environments. Chem. Rev. 2008;108:2737–2791. doi: 10.1021/cr068073+. PubMed DOI

Malý P, Gruber JM, Cogdell RJ, Mančal T, van Grondelle R. Ultrafast energy relaxation in single light-harvesting complexes. PNAS. 2016;113:2934–2939. doi: 10.1073/pnas.1522265113. PubMed DOI PMC

Brinks D, et al. Ultrafast dynamics of single molecules. Chem. Soc. Rev. 2014;43:2476–2491. doi: 10.1039/C3CS60269A. PubMed DOI

Albrecht TR, Grütter P, Horne D, Rugar D. Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 1991;69:668. doi: 10.1063/1.347347. DOI

Stomp R, et al. Detection of single-electron charging in an individual InAs quantum dot by noncontact atomic-force microscopy. Phys. Rev. Lett. 2005;94:056802. doi: 10.1103/PhysRevLett.94.056802. PubMed DOI

Gross L, et al. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science. 2009;324:1428–1431. doi: 10.1126/science.1172273. PubMed DOI

Leoni T, et al. Controlling the charge state of a single redox molecular switch. Phys. Rev. Lett. 2011;106:216103. doi: 10.1103/PhysRevLett.106.216103. PubMed DOI

Steurer W, Fatayer S, Gross L, Meyer G. Probe-based measurement of lateral single-electron transfer between individual molecules. Nat. Commun. 2015;6:8353. doi: 10.1038/ncomms9353. PubMed DOI PMC

Fatayer S, et al. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy. Nat. Nanotechnol. 2018;13:376–380. doi: 10.1038/s41565-018-0087-1. PubMed DOI

Lotze C, Corso M, Franke KJ, von Oppen F, Pascual JI. Driving a macroscopic oscillator with the stochastic motion of a hydrogen molecule. Science. 2012;338:779–782. doi: 10.1126/science.1227621. PubMed DOI

Patera LL, Queck F, Scheurer P, Repp J. Mapping orbital changes upon electron transfer with tunneling microscopy on insulators. Nature. 2019;566:245–248. doi: 10.1038/s41586-019-0910-3. PubMed DOI

Beratan DN. Why are DNA and protein electron transfer so different? Annu. Rev. Phys. Chem. 2019;70:71–97. doi: 10.1146/annurev-physchem-042018-052353. PubMed DOI PMC

Zhang Y, Liu C, Balaeff A, Skourtis SS, Beratan DN. Biological charge transfer via flickering resonance. PNAS. 2014;111:10049–10054. doi: 10.1073/pnas.1316519111. PubMed DOI PMC

Beratan DN, et al. Charge transfer in dynamical biosystems, or the treachery of (Static) images. Acc. Chem. Res. 2014;48:474–481. doi: 10.1021/ar500271d. PubMed DOI PMC

Heckmann A, Lambert C. Organic mixed‐valence compounds: a playground for electrons and holes. Angew. Chem. Int. Ed. 2012;51:326–392. doi: 10.1002/anie.201100944. PubMed DOI

Cockins L, et al. Energy levels of few-electron quantum dots imaged and characterized by atomic force microscopy. PNAS. 2010;107:9496–9501. doi: 10.1073/pnas.0912716107. PubMed DOI PMC

Craighead HG. Nanoelectromechanical systems. Science. 2000;290:1532–1535. doi: 10.1126/science.290.5496.1532. PubMed DOI

Lent CS, Isaksen B, Lieberman M. Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 2003;125:1056–1063. doi: 10.1021/ja026856g. PubMed DOI

Blair EP, Corcelli SA, Lent CS. Electric-field-driven electron-transfer in mixed-valence molecules. J. Chem. Phys. 2016;145:014307. doi: 10.1063/1.4955113. PubMed DOI

Christie JA, et al. Synthesis of a neutral mixed-valence diferrocenyl carborane for molecular quantum-dot cellular automata applications. Angew. Chem. Int. Ed. 2015;54:15448–15451. doi: 10.1002/anie.201507688. PubMed DOI

Anderson, N. G., Bhanja, S. Field-coupled nanocomputing: paradigms, progress and perspectives. in Lecture Notes in Computer Science (Springer: Berlin, 2014).

Astruc D. Why is ferrocene so exceptional? Eur. J. Inorg. Chem. 2017;2017:6–29. doi: 10.1002/ejic.201600983. DOI

Lüth H, editor. Quantum Physics in the Nanoworld. Berlin: Springer-Verlag; 2009.

Kantorovich LN, Trevethan T. General theory of microscopic dynamical response in surface probe microscopy: from imaging to dissipation. Phys. Rev. Lett. 2004;93:236102. doi: 10.1103/PhysRevLett.93.236102. PubMed DOI

Wagner C, et al. Scanning quantum dot microscopy. Phys. Rev. Lett. 2015;115:026101. doi: 10.1103/PhysRevLett.115.026101. PubMed DOI

Kocić N, et al. Periodic charging of individual molecules coupled to the motion of an atomic force microscopy tip. Nano Lett. 2015;15:4406–4411. doi: 10.1021/acs.nanolett.5b00711. PubMed DOI

Ondráček M, Hapala P, Jelínek P. Charge-state dynamics in electrostatic force spectroscopy. Nanotechnology. 2016;27:274005. doi: 10.1088/0957-4484/27/27/274005. PubMed DOI

Roy-Gobeil A, Miyahara Y, Grutter P. Revealing energy level structure of individual quantum dots by tunneling rate measured by single-electron sensitive electrostatic force spectroscopy. Nano Lett. 2015;15:2324–2328. doi: 10.1021/nl504468a. PubMed DOI

Marcus RA. Electron transfer reactions in chemistry theory and experiment. Rev. Mod. Phys. 1993;65:599. doi: 10.1103/RevModPhys.65.599. DOI

Bixon M, Jortner J. Electron transfer—from isolated molecules to biomolecules. Adv. Chem. Phys. 1999;106:35–202.

Skourtis SS, Beratan DN. Theories of structure-function relationship for bridge-mediated electron transfer reactions. Adv. Chem. Phys. 1999;106:377–452.

Mukamel, S. (eds.) Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1999).

Valkunas L, Chmeliov J, Krüger TPJ, Ilioaia C, van Grondelle R. How photosynthetic proteins switch. J. Phys. Chem. Lett. 2012;3:2779–2784. doi: 10.1021/jz300983r. DOI

May, V. & Kühn, O. (eds.) Charge and energy transfer dynamics in molecular systems (Wiley‐VCH Verlag GmbH & Co, 3, 2011).

An T, et al. Atomically resolved imaging by low-temperature frequency-modulation atomic force microscopy using a quartz length-extension resonator. Rev. Sci. Instrum. 2008;79:033703. doi: 10.1063/1.2830937. PubMed DOI

Blum V, et al. Ab initio molecular simulation with numeric atom-centered orbitals. Comput. Phys. Commun. 2009;180:2175–2196. doi: 10.1016/j.cpc.2009.06.022. DOI

Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Ren X, et al. Resolution-of-identity approach to Hartree-Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis function. N. J. Phys. 2012;14:053020. doi: 10.1088/1367-2630/14/5/053020. DOI

Tkatchenko A, Scheffler M. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009;102:073005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Visualization of π-hole in molecules by means of Kelvin probe force microscopy

. 2023 Aug 16 ; 14 (1) : 4954. [epub] 20230816

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...