Quantum dissipation driven by electron transfer within a single molecule investigated with atomic force microscopy
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32165626
PubMed Central
PMC7067884
DOI
10.1038/s41467-020-15054-w
PII: 10.1038/s41467-020-15054-w
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Intramolecular charge transfer processes play an important role in many biological, chemical and physical processes including photosynthesis, redox chemical reactions and electron transfer in molecular electronics. These charge transfer processes are frequently influenced by the dynamics of their molecular or atomic environments, and they are accompanied with energy dissipation into this environment. The detailed understanding of such processes is fundamental for their control and possible exploitation in future technological applications. Most of the experimental studies of the intramolecular charge transfer processes so far have been carried out using time-resolved optical spectroscopies on large molecular ensembles. This hampers detailed understanding of the charge transfer on the single molecular level. Here we build upon the recent progress in scanning probe microscopy, and demonstrate the control of mixed valence state. We report observation of single electron transfer between two ferrocene redox centers within a single molecule and the detection of energy dissipation associated with the single electron transfer.
Charles University Faculty of Mathematics and Physics Ke Karlovu 5 121 16 Prague 2 Czech Republic
Institute of Physics of the Czech Academy of Sciences Cukrovarnická 10 16200 Prague 6 Czech Republic
See more in PubMed
Hänggi P, Talkner P, Borkovec M. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 1990;62:251. doi: 10.1103/RevModPhys.62.251. DOI
Caldeira AO, Leggett AJ. Influence of dissipation on quantum tunneling in macrosososcopic systems. Phys. Rev. Lett. 1981;46:211. doi: 10.1103/PhysRevLett.46.211. DOI
Leggett AJ, et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 1987;59:1. doi: 10.1103/RevModPhys.59.1. DOI
Nitzan A, Ratner MA. Electron transport in molecular wire junctions. Science. 2003;3:1384–1389. doi: 10.1126/science.1081572. PubMed DOI
Joachim C, Gimzewski JK, Aviram A. Electronics using hybrid-molecular and mono-molecular devices. Nature. 2000;408:541–548. doi: 10.1038/35046000. PubMed DOI
Brédas JL, Beljonne D, Coropceanu V, Cornil J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 2004;104:4971–5004. doi: 10.1021/cr040084k. PubMed DOI
Zhang J, et al. Single-molecule electron transfer in electrochemical environments. Chem. Rev. 2008;108:2737–2791. doi: 10.1021/cr068073+. PubMed DOI
Malý P, Gruber JM, Cogdell RJ, Mančal T, van Grondelle R. Ultrafast energy relaxation in single light-harvesting complexes. PNAS. 2016;113:2934–2939. doi: 10.1073/pnas.1522265113. PubMed DOI PMC
Brinks D, et al. Ultrafast dynamics of single molecules. Chem. Soc. Rev. 2014;43:2476–2491. doi: 10.1039/C3CS60269A. PubMed DOI
Albrecht TR, Grütter P, Horne D, Rugar D. Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 1991;69:668. doi: 10.1063/1.347347. DOI
Stomp R, et al. Detection of single-electron charging in an individual InAs quantum dot by noncontact atomic-force microscopy. Phys. Rev. Lett. 2005;94:056802. doi: 10.1103/PhysRevLett.94.056802. PubMed DOI
Gross L, et al. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science. 2009;324:1428–1431. doi: 10.1126/science.1172273. PubMed DOI
Leoni T, et al. Controlling the charge state of a single redox molecular switch. Phys. Rev. Lett. 2011;106:216103. doi: 10.1103/PhysRevLett.106.216103. PubMed DOI
Steurer W, Fatayer S, Gross L, Meyer G. Probe-based measurement of lateral single-electron transfer between individual molecules. Nat. Commun. 2015;6:8353. doi: 10.1038/ncomms9353. PubMed DOI PMC
Fatayer S, et al. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy. Nat. Nanotechnol. 2018;13:376–380. doi: 10.1038/s41565-018-0087-1. PubMed DOI
Lotze C, Corso M, Franke KJ, von Oppen F, Pascual JI. Driving a macroscopic oscillator with the stochastic motion of a hydrogen molecule. Science. 2012;338:779–782. doi: 10.1126/science.1227621. PubMed DOI
Patera LL, Queck F, Scheurer P, Repp J. Mapping orbital changes upon electron transfer with tunneling microscopy on insulators. Nature. 2019;566:245–248. doi: 10.1038/s41586-019-0910-3. PubMed DOI
Beratan DN. Why are DNA and protein electron transfer so different? Annu. Rev. Phys. Chem. 2019;70:71–97. doi: 10.1146/annurev-physchem-042018-052353. PubMed DOI PMC
Zhang Y, Liu C, Balaeff A, Skourtis SS, Beratan DN. Biological charge transfer via flickering resonance. PNAS. 2014;111:10049–10054. doi: 10.1073/pnas.1316519111. PubMed DOI PMC
Beratan DN, et al. Charge transfer in dynamical biosystems, or the treachery of (Static) images. Acc. Chem. Res. 2014;48:474–481. doi: 10.1021/ar500271d. PubMed DOI PMC
Heckmann A, Lambert C. Organic mixed‐valence compounds: a playground for electrons and holes. Angew. Chem. Int. Ed. 2012;51:326–392. doi: 10.1002/anie.201100944. PubMed DOI
Cockins L, et al. Energy levels of few-electron quantum dots imaged and characterized by atomic force microscopy. PNAS. 2010;107:9496–9501. doi: 10.1073/pnas.0912716107. PubMed DOI PMC
Craighead HG. Nanoelectromechanical systems. Science. 2000;290:1532–1535. doi: 10.1126/science.290.5496.1532. PubMed DOI
Lent CS, Isaksen B, Lieberman M. Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 2003;125:1056–1063. doi: 10.1021/ja026856g. PubMed DOI
Blair EP, Corcelli SA, Lent CS. Electric-field-driven electron-transfer in mixed-valence molecules. J. Chem. Phys. 2016;145:014307. doi: 10.1063/1.4955113. PubMed DOI
Christie JA, et al. Synthesis of a neutral mixed-valence diferrocenyl carborane for molecular quantum-dot cellular automata applications. Angew. Chem. Int. Ed. 2015;54:15448–15451. doi: 10.1002/anie.201507688. PubMed DOI
Anderson, N. G., Bhanja, S. Field-coupled nanocomputing: paradigms, progress and perspectives. in Lecture Notes in Computer Science (Springer: Berlin, 2014).
Astruc D. Why is ferrocene so exceptional? Eur. J. Inorg. Chem. 2017;2017:6–29. doi: 10.1002/ejic.201600983. DOI
Lüth H, editor. Quantum Physics in the Nanoworld. Berlin: Springer-Verlag; 2009.
Kantorovich LN, Trevethan T. General theory of microscopic dynamical response in surface probe microscopy: from imaging to dissipation. Phys. Rev. Lett. 2004;93:236102. doi: 10.1103/PhysRevLett.93.236102. PubMed DOI
Wagner C, et al. Scanning quantum dot microscopy. Phys. Rev. Lett. 2015;115:026101. doi: 10.1103/PhysRevLett.115.026101. PubMed DOI
Kocić N, et al. Periodic charging of individual molecules coupled to the motion of an atomic force microscopy tip. Nano Lett. 2015;15:4406–4411. doi: 10.1021/acs.nanolett.5b00711. PubMed DOI
Ondráček M, Hapala P, Jelínek P. Charge-state dynamics in electrostatic force spectroscopy. Nanotechnology. 2016;27:274005. doi: 10.1088/0957-4484/27/27/274005. PubMed DOI
Roy-Gobeil A, Miyahara Y, Grutter P. Revealing energy level structure of individual quantum dots by tunneling rate measured by single-electron sensitive electrostatic force spectroscopy. Nano Lett. 2015;15:2324–2328. doi: 10.1021/nl504468a. PubMed DOI
Marcus RA. Electron transfer reactions in chemistry theory and experiment. Rev. Mod. Phys. 1993;65:599. doi: 10.1103/RevModPhys.65.599. DOI
Bixon M, Jortner J. Electron transfer—from isolated molecules to biomolecules. Adv. Chem. Phys. 1999;106:35–202.
Skourtis SS, Beratan DN. Theories of structure-function relationship for bridge-mediated electron transfer reactions. Adv. Chem. Phys. 1999;106:377–452.
Mukamel, S. (eds.) Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1999).
Valkunas L, Chmeliov J, Krüger TPJ, Ilioaia C, van Grondelle R. How photosynthetic proteins switch. J. Phys. Chem. Lett. 2012;3:2779–2784. doi: 10.1021/jz300983r. DOI
May, V. & Kühn, O. (eds.) Charge and energy transfer dynamics in molecular systems (Wiley‐VCH Verlag GmbH & Co, 3, 2011).
An T, et al. Atomically resolved imaging by low-temperature frequency-modulation atomic force microscopy using a quartz length-extension resonator. Rev. Sci. Instrum. 2008;79:033703. doi: 10.1063/1.2830937. PubMed DOI
Blum V, et al. Ab initio molecular simulation with numeric atom-centered orbitals. Comput. Phys. Commun. 2009;180:2175–2196. doi: 10.1016/j.cpc.2009.06.022. DOI
Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Ren X, et al. Resolution-of-identity approach to Hartree-Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis function. N. J. Phys. 2012;14:053020. doi: 10.1088/1367-2630/14/5/053020. DOI
Tkatchenko A, Scheffler M. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009;102:073005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI
Visualization of π-hole in molecules by means of Kelvin probe force microscopy