Visualization of π-hole in molecules by means of Kelvin probe force microscopy

. 2023 Aug 16 ; 14 (1) : 4954. [epub] 20230816

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37587123
Odkazy

PubMed 37587123
PubMed Central PMC10432393
DOI 10.1038/s41467-023-40593-3
PII: 10.1038/s41467-023-40593-3
Knihovny.cz E-zdroje

Submolecular charge distribution significantly affects the physical-chemical properties of molecules and their mutual interaction. One example is the presence of a π-electron-deficient cavity in halogen-substituted polyaromatic hydrocarbon compounds, the so-called π-holes, the existence of which was predicted theoretically, but the direct experimental observation is still missing. Here we present the resolution of the π-hole on a single molecule using the Kelvin probe force microscopy, which supports the theoretical prediction of its existence. In addition, experimental measurements supported by theoretical calculations show the importance of π-holes in the process of adsorption of molecules on solid-state surfaces. This study expands our understanding of the π-hole systems and, at the same time, opens up possibilities for studying the influence of submolecular charge distribution on the chemical properties of molecules and their mutual interaction.

Zobrazit více v PubMed

Müller-Dethlefs K, Hobza P. Noncovalent interactions: a challenge for experiment and theory. Chem. Rev. 2000;100:143–168. doi: 10.1021/cr9900331. PubMed DOI

Murray JS, Shields ZPI, Seybold PG, Politzer P. Intuitive and counterintuitive noncovalent interactions of aromatic π regions with the hydrogen and the nitrogen of HCN. J. Comput. Sci. 2015;10:209–216. doi: 10.1016/j.jocs.2015.02.001. DOI

Pluháčková K, Jurečka P, Hobza P. Stabilisation energy of C 6 H 6 ⋯C 6 X 6 (X = F, Cl, Br, I, CN) complexes: complete basis set limit calculations at MP2 and CCSD(T) levels. Phys. Chem. Chem. Phys. 2007;9:755–760. doi: 10.1039/B615318F. PubMed DOI

Murray JS, Lane P, Clark T, Riley KE, Politzer P. σ-Holes, π-holes and electrostatically-driven interactions. J. Mol. Model. 2012;18:541–548. doi: 10.1007/s00894-011-1089-1. PubMed DOI

Politzer P, Murray JS, Clark T. The π-hole revisited. Phys. Chem. Chem. Phys. 2021;23:16458–16468. doi: 10.1039/D1CP02602J. PubMed DOI

Řezáč J, Hobza P. Benchmark calculations of interaction energies in noncovalent complexes and their applications. Chem. Rev. 2016;116:5038–5071. doi: 10.1021/acs.chemrev.5b00526. PubMed DOI

Wang H, Wang W, Jin WJ. σ-hole bond vs π-hole bond: a comparison based on halogen bond. Chem. Rev. 2016;116:5072–5104. doi: 10.1021/acs.chemrev.5b00527. PubMed DOI

Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science (1979) 2009;325:1110–1114. PubMed

Jelínek P. High resolution SPM imaging of organic molecules with functionalized tips. J. Phys. Condens. Matter. 2017;29:343002. doi: 10.1088/1361-648X/aa76c7. PubMed DOI

Wäckerlin C, et al. Role of the magnetic anisotropy in atomic-spin sensing of 1D molecular chains. ACS Nano. 2022;16:16402–16413. doi: 10.1021/acsnano.2c05609. PubMed DOI

Mallada B, et al. Real-space imaging of anisotropic charge of σ-hole by means of Kelvin probe force microscopy. Science (1979) 2021;374:863–867. PubMed

Wheeler SE, Houk KN. Through-space effects of substituents dominate molecular electrostatic potentials of substituted arenes. J. Chem. Theory Comput. 2009;5:2301–2312. doi: 10.1021/ct900344g. PubMed DOI PMC

Sadewasser, S. & Glatzel, T. In Kelvin Probe Force Microscopy: from Single Charge Detection to Device Characterization (Springer International Publishing, Cham, 2018).

Sadewasser S, et al. New insights on atomic-resolution frequency-modulation kelvin-probe force-microscopy imaging of semiconductors. Phys Rev. Lett. 2009;103:266103. doi: 10.1103/PhysRevLett.103.266103. PubMed DOI

Gross L, et al. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science (1979) 2009;324:1428–1431. PubMed

Berger J, et al. Quantum dissipation driven by electron transfer within a single molecule investigated with atomic force microscopy. Nat. Commun. 2020;11:1337. doi: 10.1038/s41467-020-15054-w. PubMed DOI PMC

Mohn F, Gross L, Moll N, Meyer G. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 2012;7:227–231. doi: 10.1038/nnano.2012.20. PubMed DOI

Klein BP, et al. Molecular topology and the surface chemical bond: alternant versus nonalternant aromatic systems as functional structural elements. Phys. Rev. X. 2019;9:011030.

Mallada B, et al. Atomic-scale charge distribution mapping of single substitutional p-and n-Type dopants in graphene. ACS Sustain Chem Eng. 2020;8:3437–3444. doi: 10.1021/acssuschemeng.9b07623. DOI

Mohn F, Schuler B, Gross L, Meyer G. Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl. Phys. Lett. 2013;102:073109. doi: 10.1063/1.4793200. DOI

Moll N, et al. Image distortions of a partially fluorinated hydrocarbon molecule in atomic force microscopy with carbon monoxide terminated tips. Nano Lett. 2014;14:6127–6131. doi: 10.1021/nl502113z. PubMed DOI

Albrecht F, et al. Probing charges on the atomic scale by means of atomic force microscopy. Phys. Rev. Lett. 2015;115:076101. doi: 10.1103/PhysRevLett.115.076101. PubMed DOI

Hapala P, et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B Condens Matter Mater Phys. 2014;90:085421. doi: 10.1103/PhysRevB.90.085421. DOI

Schuler B, et al. Adsorption geometry determination of single molecules by atomic force microscopy. Phys. Rev. Lett. 2013;111:106103. doi: 10.1103/PhysRevLett.111.106103. PubMed DOI

Gonthier JF, Sherrill CD. Density-fitted open-shell symmetry-adapted perturbation theory and application to π -stacking in benzene dimer cation and ionized DNA base pair steps. J. Chem. Phys. 2016;145:134106. doi: 10.1063/1.4963385. PubMed DOI

Horcas I, et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007;78:013705. doi: 10.1063/1.2432410. PubMed DOI

Blum V, et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 2009;180:2175–2196. doi: 10.1016/j.cpc.2009.06.022. DOI

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 1999;110:6158. doi: 10.1063/1.478522. DOI

Ren X, et al. Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions. New. J. Phys. 2012;14:053020. doi: 10.1088/1367-2630/14/5/053020. DOI

Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009;102:073005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI

Krejčí O, Hapala P, Ondráček M, Jelínek P. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B. 2017;95:045407. doi: 10.1103/PhysRevB.95.045407. DOI

Dunning TH. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007–1023. doi: 10.1063/1.456153. DOI

Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297. doi: 10.1039/b508541a. PubMed DOI

Neese F, Wennmohs F, Becker U, Riplinger C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020;152:224108. doi: 10.1063/5.0004608. PubMed DOI

Smith DGA, et al. PSI4 1.4: open-source software for high-throughput quantum chemistry. J. Chem. Phys. 2020;152:184108. doi: 10.1063/5.0006002. PubMed DOI PMC

Peterson KA, Puzzarini C. Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor. Chem. Acc. 2005;114:283–296. doi: 10.1007/s00214-005-0681-9. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...