Visualization of π-hole in molecules by means of Kelvin probe force microscopy
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
37587123
PubMed Central
PMC10432393
DOI
10.1038/s41467-023-40593-3
PII: 10.1038/s41467-023-40593-3
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Submolecular charge distribution significantly affects the physical-chemical properties of molecules and their mutual interaction. One example is the presence of a π-electron-deficient cavity in halogen-substituted polyaromatic hydrocarbon compounds, the so-called π-holes, the existence of which was predicted theoretically, but the direct experimental observation is still missing. Here we present the resolution of the π-hole on a single molecule using the Kelvin probe force microscopy, which supports the theoretical prediction of its existence. In addition, experimental measurements supported by theoretical calculations show the importance of π-holes in the process of adsorption of molecules on solid-state surfaces. This study expands our understanding of the π-hole systems and, at the same time, opens up possibilities for studying the influence of submolecular charge distribution on the chemical properties of molecules and their mutual interaction.
See more in PubMed
Müller-Dethlefs K, Hobza P. Noncovalent interactions: a challenge for experiment and theory. Chem. Rev. 2000;100:143–168. doi: 10.1021/cr9900331. PubMed DOI
Murray JS, Shields ZPI, Seybold PG, Politzer P. Intuitive and counterintuitive noncovalent interactions of aromatic π regions with the hydrogen and the nitrogen of HCN. J. Comput. Sci. 2015;10:209–216. doi: 10.1016/j.jocs.2015.02.001. DOI
Pluháčková K, Jurečka P, Hobza P. Stabilisation energy of C 6 H 6 ⋯C 6 X 6 (X = F, Cl, Br, I, CN) complexes: complete basis set limit calculations at MP2 and CCSD(T) levels. Phys. Chem. Chem. Phys. 2007;9:755–760. doi: 10.1039/B615318F. PubMed DOI
Murray JS, Lane P, Clark T, Riley KE, Politzer P. σ-Holes, π-holes and electrostatically-driven interactions. J. Mol. Model. 2012;18:541–548. doi: 10.1007/s00894-011-1089-1. PubMed DOI
Politzer P, Murray JS, Clark T. The π-hole revisited. Phys. Chem. Chem. Phys. 2021;23:16458–16468. doi: 10.1039/D1CP02602J. PubMed DOI
Řezáč J, Hobza P. Benchmark calculations of interaction energies in noncovalent complexes and their applications. Chem. Rev. 2016;116:5038–5071. doi: 10.1021/acs.chemrev.5b00526. PubMed DOI
Wang H, Wang W, Jin WJ. σ-hole bond vs π-hole bond: a comparison based on halogen bond. Chem. Rev. 2016;116:5072–5104. doi: 10.1021/acs.chemrev.5b00527. PubMed DOI
Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science (1979) 2009;325:1110–1114. PubMed
Jelínek P. High resolution SPM imaging of organic molecules with functionalized tips. J. Phys. Condens. Matter. 2017;29:343002. doi: 10.1088/1361-648X/aa76c7. PubMed DOI
Wäckerlin C, et al. Role of the magnetic anisotropy in atomic-spin sensing of 1D molecular chains. ACS Nano. 2022;16:16402–16413. doi: 10.1021/acsnano.2c05609. PubMed DOI
Mallada B, et al. Real-space imaging of anisotropic charge of σ-hole by means of Kelvin probe force microscopy. Science (1979) 2021;374:863–867. PubMed
Wheeler SE, Houk KN. Through-space effects of substituents dominate molecular electrostatic potentials of substituted arenes. J. Chem. Theory Comput. 2009;5:2301–2312. doi: 10.1021/ct900344g. PubMed DOI PMC
Sadewasser, S. & Glatzel, T. In Kelvin Probe Force Microscopy: from Single Charge Detection to Device Characterization (Springer International Publishing, Cham, 2018).
Sadewasser S, et al. New insights on atomic-resolution frequency-modulation kelvin-probe force-microscopy imaging of semiconductors. Phys Rev. Lett. 2009;103:266103. doi: 10.1103/PhysRevLett.103.266103. PubMed DOI
Gross L, et al. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science (1979) 2009;324:1428–1431. PubMed
Berger J, et al. Quantum dissipation driven by electron transfer within a single molecule investigated with atomic force microscopy. Nat. Commun. 2020;11:1337. doi: 10.1038/s41467-020-15054-w. PubMed DOI PMC
Mohn F, Gross L, Moll N, Meyer G. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 2012;7:227–231. doi: 10.1038/nnano.2012.20. PubMed DOI
Klein BP, et al. Molecular topology and the surface chemical bond: alternant versus nonalternant aromatic systems as functional structural elements. Phys. Rev. X. 2019;9:011030.
Mallada B, et al. Atomic-scale charge distribution mapping of single substitutional p-and n-Type dopants in graphene. ACS Sustain Chem Eng. 2020;8:3437–3444. doi: 10.1021/acssuschemeng.9b07623. DOI
Mohn F, Schuler B, Gross L, Meyer G. Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl. Phys. Lett. 2013;102:073109. doi: 10.1063/1.4793200. DOI
Moll N, et al. Image distortions of a partially fluorinated hydrocarbon molecule in atomic force microscopy with carbon monoxide terminated tips. Nano Lett. 2014;14:6127–6131. doi: 10.1021/nl502113z. PubMed DOI
Albrecht F, et al. Probing charges on the atomic scale by means of atomic force microscopy. Phys. Rev. Lett. 2015;115:076101. doi: 10.1103/PhysRevLett.115.076101. PubMed DOI
Hapala P, et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B Condens Matter Mater Phys. 2014;90:085421. doi: 10.1103/PhysRevB.90.085421. DOI
Schuler B, et al. Adsorption geometry determination of single molecules by atomic force microscopy. Phys. Rev. Lett. 2013;111:106103. doi: 10.1103/PhysRevLett.111.106103. PubMed DOI
Gonthier JF, Sherrill CD. Density-fitted open-shell symmetry-adapted perturbation theory and application to π -stacking in benzene dimer cation and ionized DNA base pair steps. J. Chem. Phys. 2016;145:134106. doi: 10.1063/1.4963385. PubMed DOI
Horcas I, et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007;78:013705. doi: 10.1063/1.2432410. PubMed DOI
Blum V, et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 2009;180:2175–2196. doi: 10.1016/j.cpc.2009.06.022. DOI
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 1999;110:6158. doi: 10.1063/1.478522. DOI
Ren X, et al. Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions. New. J. Phys. 2012;14:053020. doi: 10.1088/1367-2630/14/5/053020. DOI
Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009;102:073005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI
Krejčí O, Hapala P, Ondráček M, Jelínek P. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B. 2017;95:045407. doi: 10.1103/PhysRevB.95.045407. DOI
Dunning TH. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007–1023. doi: 10.1063/1.456153. DOI
Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297. doi: 10.1039/b508541a. PubMed DOI
Neese F, Wennmohs F, Becker U, Riplinger C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020;152:224108. doi: 10.1063/5.0004608. PubMed DOI
Smith DGA, et al. PSI4 1.4: open-source software for high-throughput quantum chemistry. J. Chem. Phys. 2020;152:184108. doi: 10.1063/5.0006002. PubMed DOI PMC
Peterson KA, Puzzarini C. Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor. Chem. Acc. 2005;114:283–296. doi: 10.1007/s00214-005-0681-9. DOI