LHCII Dotaz Zobrazit nápovědu
Xanthophylls in light harvesting complexes perform a number of functions ranging from structural support to light-harvesting and photoprotection. In the major light harvesting complex of photosystem II in plants (LHCII), the innermost xanthophyll binding pockets are occupied by lutein molecules. The conservation of these sites within the LHC protein family suggests their importance in LHCII functionality. In the present work, we induced the photoprotective switch in LHCII isolated from the Arabidopsis mutant npq1lut2, where the lutein molecules are exchanged with violaxanthin. Despite the differences in the energetics of the pigments and the impairment of chlorophyll fluorescence quenching in vivo, we show that isolated complexes containing violaxanthin are still able to induce the quenching switch to a similar extent to wild type LHCII monomers. Moreover, the same spectroscopic changes take place, which suggest the involvement of the terminal emitter site (L1) in energy dissipation in both complexes. These results indicate the robust nature of the L1 xanthophyll binding domain in LHCII, where protein structural cues are the major determinant of the function of the bound carotenoid.
Light-harvesting complex II (LHCII) from the marine green macroalga Bryopsis corticulans is spectroscopically characterized to understand the structural and functional changes resulting from adaptation to intertidal environment. LHCII is homologous to its counterpart in land plants but has a different carotenoid and chlorophyll (Chl) composition. This is reflected in the steady-state absorption, fluorescence, linear dichroism, circular dichroism and anisotropic circular dichroism spectra. Time-resolved fluorescence and two-dimensional electronic spectroscopy were used to investigate the consequences of this adaptive change in the pigment composition on the excited-state dynamics. The complex contains additional Chl b spectral forms - absorbing at around 650 nm and 658 nm - and lacks the red-most Chl a forms compared with higher-plant LHCII. Similar to plant LHCII, energy transfer between Chls occurs on timescales from under hundred fs (mainly from Chl b to Chl a) to several picoseconds (mainly between Chl a pools). However, the presence of long-lived, weakly coupled Chl b and Chl a states leads to slower exciton equilibration in LHCII from B. corticulans. The finding demonstrates a trade-off between the enhanced absorption of blue-green light and the excitation migration time. However, the adaptive change does not result in a significant drop in the overall photochemical efficiency of Photosystem II. These results show that LHCII is a robust adaptable system whose spectral properties can be tuned to the environment for optimal light harvesting.
Antenna protein aggregation is one of the principal mechanisms considered effective in protecting phototrophs against high light damage. Commonly, it is induced, in vitro, by decreasing detergent concentration and pH of a solution of purified antennas; the resulting reduction in fluorescence emission is considered to be representative of non-photochemical quenching in vivo. However, little is known about the actual size and organization of antenna particles formed by this means, and hence the physiological relevance of this experimental approach is questionable. Here, a quasi-single molecule method, fluorescence correlation spectroscopy (FCS), was applied during in vitro quenching of LHCII trimers from higher plants for a parallel estimation of particle size, fluorescence, and antenna cluster homogeneity in a single measurement. FCS revealed that, below detergent critical micelle concentration, low pH promoted the formation of large protein oligomers of sizes up to micrometers, and therefore is apparently incompatible with thylakoid membranes. In contrast, LHCII clusters formed at high pH were smaller and homogenous, and yet still capable of efficient quenching. The results altogether set the physiological validity limits of in vitro quenching experiments. Our data also support the idea that the small, moderately quenching LHCII oligomers found at high pH could be relevant with respect to non-photochemical quenching in vivo.
- MeSH
- chlorofyl chemie genetika účinky záření MeSH
- fluorescence MeSH
- fluorescenční spektrometrie MeSH
- fotosyntéza genetika MeSH
- fotosystém II - proteinový komplex genetika účinky záření MeSH
- fototrofní procesy genetika MeSH
- homeodoménový protein Antennapedia chemie genetika MeSH
- koncentrace vodíkových iontů MeSH
- proteinové agregáty genetika MeSH
- shluková analýza MeSH
- světlo škodlivé účinky MeSH
- světlosběrné proteinové komplexy chemie genetika MeSH
- tylakoidy chemie genetika účinky záření MeSH
- zeaxanthiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
MAIN CONCLUSION: The absence of state transitions in a Nt(Hn) cybrid is due to a cleavage of the threonine residue from the misprocessed N-terminus of the LHCII polypeptides. The cooperation between the nucleus and chloroplast genomes is essential for plant photosynthetic fitness. The rapid and specific interactions between nucleus-encoded and chloroplast-encoded proteins are under intense investigation with potential for applications in agriculture and renewable energy technology. Here, we present a novel model for photosynthesis research in which alien henbane (Hyoscyamus niger) chloroplasts function on the nuclear background of a tobacco (Nicotiana tabacum). The result of this coupling is a cytoplasmic hybrid (cybrid) with inhibited state transitions-a mechanism responsible for balancing energy absorption between photosystems. Protein analysis showed differences in the LHCII composition of the cybrid plants. SDS-PAGE analysis revealed a novel banding pattern in the cybrids with at least one additional 'LHCII' band compared to the wild-type parental species. Proteomic work suggested that the N-terminus of at least some of the cybrid Lhcb proteins was missing. These findings provide a mechanistic explanation for the lack of state transitions-the N-terminal truncation of the Lhcb proteins in the cybrid included the threonine residue that is phosphorylated/dephosphorylated in order to trigger state transitions and therefore crucial energy balancing mechanism in plants.
- MeSH
- buněčné jádro metabolismus MeSH
- chloroplasty metabolismus MeSH
- fosforylace MeSH
- fotosyntéza MeSH
- fotosystém II - proteinový komplex genetika metabolismus MeSH
- genom chloroplastový genetika MeSH
- genom rostlinný genetika MeSH
- proteomika MeSH
- světlosběrné proteinové komplexy genetika metabolismus MeSH
- tabák genetika fyziologie MeSH
- threonin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
In the major peripheral plant light-harvesting complex LHCII, excitation energy is transferred between chlorophylls along an energetic cascade before it is transmitted further into the photosynthetic assembly to be converted into chemical energy. The efficiency of these energy transfer processes involves a complicated interplay of pigment-protein structural reorganization and protein dynamic disorder, and the system must stay robust within the fluctuating protein environment. The final, lowest energy site has been proposed to exist within a trimeric excitonically coupled chlorophyll (Chl) cluster, comprising Chls a610-a611-a612. We studied an LHCII monomer with a site-specific mutation resulting in the loss of Chls a611and a612, and find that this mutant exhibits two predominant overlapping fluorescence bands. From a combination of bulk measurements, single-molecule fluorescence characterization, and modeling, we propose the two fluorescence bands originate from differing conditions of exciton delocalization and localization realized in the mutant. Disruption of the excitonically coupled terminal emitter Chl trimer results in an increased sensitivity of the excited state energy landscape to the disorder induced by the protein conformations. Consequently, the mutant demonstrates a loss of energy transfer efficiency. On the contrary, in the wild-type complex, the strong resonance coupling and correspondingly high degree of excitation delocalization within the Chls a610-a611-a612 cluster dampens the influence of the environment and ensures optimal communication with neighboring pigments. These results indicate that the terminal emitter trimer is thus an essential design principle for maintaining the efficient light-harvesting function of LHCII in the presence of protein disorder.
Photoprotective non-photochemical quenching (NPQ) represents an effective way to dissipate the light energy absorbed in excess by most phototrophs. It is often claimed that NPQ formation/relaxation kinetics are determined by xanthophyll composition. We, however, found that, for the alveolate alga Chromera velia, this is not the case. In the present paper, we investigated the reasons for the constitutive high rate of quenching displayed by the alga by comparing its light harvesting strategies with those of a model phototroph, the land plant Spinacia oleracea. Experimental results and in silico studies support the idea that fast quenching is due not to xanthophylls, but to intrinsic properties of the Chromera light harvesting complex (CLH) protein, related to amino acid composition and protein folding. The pKa for CLH quenching was shifted by 0.5 units to a higher pH compared with higher plant antennas (light harvesting complex II; LHCII). We conclude that, whilst higher plant LHCIIs are better suited for light harvesting, CLHs are 'natural quenchers' ready to switch into a dissipative state. We propose that organisms with antenna proteins intrinsically more sensitive to protons, such as C. velia, carry a relatively high concentration of violaxanthin to improve their light harvesting. In contrast, higher plants need less violaxanthin per chlorophyll because LHCII proteins are more efficient light harvesters and instead require co-factors such as zeaxanthin and PsbS to accelerate and enhance quenching.
- MeSH
- Alveolata fyziologie MeSH
- bílkoviny řas metabolismus MeSH
- fotosyntéza * MeSH
- protony * MeSH
- protozoální proteiny metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- Spinacia oleracea fyziologie MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Plant photosystem II (PSII) is organized into large supercomplexes with variable levels of membrane-bound light-harvesting proteins (LHCIIs). The largest stable form of the PSII supercomplex involves four LHCII trimers, which are specifically connected to the PSII core dimer via monomeric antenna proteins. The PSII supercomplexes can further interact in the thylakoid membrane, forming PSII megacomplexes. So far, only megacomplexes consisting of two PSII supercomplexes associated in parallel have been observed. Here we show that the forms of PSII megacomplexes can be much more variable. We performed single particle electron microscopy (EM) analysis of PSII megacomplexes isolated from Arabidopsis thaliana using clear-native polyacrylamide gel electrophoresis. Extensive image analysis of a large data set revealed that besides the known PSII megacomplexes, there are distinct groups of megacomplexes with non-parallel association of supercomplexes. In some of them, we have found additional LHCII trimers, which appear to stabilize the non-parallel assemblies. We also performed EM analysis of the PSII supercomplexes on the level of whole grana membranes and successfully identified several types of megacomplexes, including those with non-parallel supercomplexes, which strongly supports their natural origin. Our data demonstrate a remarkable ability of plant PSII to form various larger assemblies, which may control photochemical usage of absorbed light energy in plants in a changing environment.
- MeSH
- Arabidopsis metabolismus MeSH
- elektronová mikroskopie MeSH
- fotosystém II - proteinový komplex chemie metabolismus ultrastruktura MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- proteiny huseníčku metabolismus ultrastruktura MeSH
- světlosběrné proteinové komplexy chemie metabolismus ultrastruktura MeSH
- tylakoidy metabolismus ultrastruktura MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
Resonance Raman spectroscopy was used to evaluate pigment structure in the FCP-like light-harvesting complex of Chromera velia (Chromera light-harvesting complex or CLH). This antenna protein contains chlorophyll a, violaxanthin and a new isofucoxanthin-like carotenoid (called Ifx-l). We show that Ifx-l is present in two non-equivalent binding pockets with different conformations, having their (0,0) absorption maxima at 515 and 548nm respectively. In this complex, only one violaxanthin population absorbing at 486nm is observed. All the CLH-bound carotenoid molecules are in all-trans configuration, and among the two Ifx-l carotenoid molecules, the red one is twisted, as is the red-absorbing lutein in LHCII trimers. Analysis of the carbonyl stretching region for Chl a excitations indicates CLH binds up to seven Chl a molecules in five non-equivalent binding sites, in reasonable agreement with sequence analyses which have identified eight potential coordinating residues. The binding modes and conformations of CLH-bound pigments are discussed with respect to the known structures of LHCII and FCP.
Light quality significantly influences plant metabolism, growth and development. Recently, we have demonstrated that leaves of barley and other plant species grown under monochromatic green light (500-590 nm) accumulated a large pool of chlorophyll a (Chl a) intermediates with incomplete hydrogenation of their phytyl chains. In this work, we studied accumulation of these geranylgeranylated Chls a and b in pigment-protein complexes (PPCs) of Arabidopsis plants acclimated to green light and their structural-functional consequences on the photosynthetic apparatus. We found that geranylgeranylated Chls are present in all major PPCs, although their presence was more pronounced in light-harvesting complex II (LHCII) and less prominent in supercomplexes of photosystem II (PSII). Accumulation of geranylgeranylated Chls hampered the formation of PSII and PSI super- and megacomplexes in the thylakoid membranes as well as their assembly into chiral macrodomains; it also lowered the temperature stability of the PPCs, especially that of LHCII trimers, which led to their monomerization and an anomaly in the photoprotective mechanism of non-photochemical quenching. Role of geranylgeranylated Chls in adverse effects on photosynthetic apparatus of plants acclimated to green light is discussed.
Essential trace elements (Cu(2+), Zn(2+), etc) lead to toxic effects above a certain threshold, which is a major environmental problem in many areas of the world. Here, environmentally relevant sub-micromolar concentrations of Cu(2+) and simulations of natural light and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum a s a model for plant shoots. In this low irradiance study resembling non-summer conditions, growth was optimal in the range 7.5-35nM Cu, while PSII activity (Fv/Fm) was maximal around 7.5nM Cu. Damage to the light harvesting complex of photosystem II (LHCII) was the first target of Cu toxicity (>50nM Cu) where Cu replaced Mg in the LHCII-trimers. This was associated with a subsequent decrease of Chl a as well as heat dissipation (NPQ). The growth rate was decreased from the first week of Cu deficiency. Plastocyanin malfunction due to the lack of Cu that is needed for its active centre was the likely cause of diminished electron flow through PSII (ΦPSII). The pigment decrease added to the damage in the photosynthetic light reactions. These mechanisms ultimately resulted in decrease of starch and oxygen production.
- MeSH
- biologické markery metabolismus MeSH
- chemické látky znečišťující vodu chemie toxicita MeSH
- fotosyntéza účinky léků fyziologie MeSH
- Magnoliopsida účinky léků růst a vývoj metabolismus MeSH
- měď chemie nedostatek toxicita MeSH
- proteom účinky léků metabolismus MeSH
- proteomika MeSH
- světlo MeSH
- testy toxicity MeSH
- vodní organismy účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH