Target Analysis Resolves the Ground and Excited State Properties from Femtosecond Stimulated Raman Spectra
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39241188
PubMed Central
PMC11417988
DOI
10.1021/acs.jpclett.4c01555
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Target analysis is employed to resolve the ground and excited state properties from simultaneously measured Femtosecond Stimulated Raman Spectra (FSRS) and Transient Absorption Spectra (TAS). FSRS is a three-pulse technique, involving picosecond Raman pump pulses and femtosecond visible pump and probe pulses. The TAS are needed to precisely estimate the properties of the Instrument Response Function. The prezero "coherent artifact" present during the overlap of the three pulses is described by a damped oscillation with a frequency (ω - ωn) where ωn is a ground state resonance Raman frequency. Simultaneous target analysis of the FSRS and TAS allows the complete excited state dynamics to be resolved with a time resolution better than 100 fs. The model system studied is the carotenoid lycopene in tetrahydrofuran. The lycopene dynamics show a spectral evolution with seven states, including a biphasic cooling process during the S2-S1 internal conversion, multiple S1 lifetimes, and an S* state decaying with a lifetime of 7 ps.
See more in PubMed
Yoshizawa M.; Kurosawa M. Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering. Phys. Rev. A 1999, 61 (1), 013808.10.1103/PhysRevA.61.013808. DOI
McCamant D. W.; Kim J. E.; Mathies R. A. Vibrational relaxation in beta-carotene probed by picosecond Stokes and anti-Stokes resonance Raman spectroscopy. J. Phys. Chem. A 2002, 106 (25), 6030–6038. 10.1021/jp0203595. PubMed DOI PMC
Kukura P.; McCamant D. W.; Mathies R. A. Femtosecond Time-Resolved Stimulated Raman Spectroscopy of the S2 (1Bu+) Excited State of β-Carotene. J. Phys. Chem. A 2004, 108 (28), 5921–5925. 10.1021/jp0482971. PubMed DOI PMC
Kukura P.; McCamant D. W.; Mathies R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 2007, 58, 461–488. 10.1146/annurev.physchem.58.032806.104456. PubMed DOI
Kloz M.; Weißenborn J.; Polívka T.; Frank H. A.; Kennis J. T. M. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S* state. Phys. Chem. Chem. Phys. 2016, 18 (21), 14619–14628. 10.1039/C6CP01464J. PubMed DOI
Kuramochi H.; Tahara T. Tracking Ultrafast Structural Dynamics by Time-Domain Raman Spectroscopy. J. Am. Chem. Soc. 2021, 143 (26), 9699–9717. 10.1021/jacs.1c02545. PubMed DOI PMC
Batignani G.; Ferrante C.; Fumero G.; Martinati M.; Scopigno T. Femtosecond stimulated Raman spectroscopy. Nature Reviews Methods Primers 2024, 4 (1), 34.10.1038/s43586-024-00314-6. DOI
van Stokkum I. H. M.; Kloz M.; Polli D.; Viola D.; Weißenborn J.; Peerbooms E.; Cerullo G.; Kennis J. T. M. Vibronic dynamics resolved by global and target analysis of ultrafast transient absorption spectra. J. Chem. Phys. 2021, 155 (11), 114113.10.1063/5.0060672. PubMed DOI
Batignani G.; Fumero G.; Pontecorvo E.; Ferrante C.; Mukamel S.; Scopigno T. Genuine Dynamics vs Cross Phase Modulation Artifacts in Femtosecond Stimulated Raman Spectroscopy. ACS Photonics 2019, 6 (2), 492–500. 10.1021/acsphotonics.8b01467. DOI
Hamm P. Coherent effects in femtosecond infrared spectroscopy. Chem. Phys. 1995, 200 (3), 415–429. 10.1016/0301-0104(95)00262-6. DOI
Rondonuwu F. S.; Kakitani Y.; Tamura H.; Koyama Y. Singlet internal conversion processes in the order of 1Bu+→3Ag-→1Bu-→2Ag-→1Ag- in all-trans-spheroidene and lycopene as revealed by subpicosecond time-resolved Raman spectroscopy. Chem. Phys. Lett. 2006, 429 (1), 234–238. 10.1016/j.cplett.2006.07.061. DOI
Taffet E. J.; Lee B. G.; Toa Z. S. D.; Pace N.; Rumbles G.; Southall J.; Cogdell R. J.; Scholes G. D. Carotenoid Nuclear Reorganization and Interplay of Bright and Dark Excited States. J. Phys. Chem. B 2019, 123 (41), 8628–8643. 10.1021/acs.jpcb.9b04027. PubMed DOI
Llansola-Portoles M. J.; Redeckas K.; Streckaité S.; Ilioaia C.; Pascal A. A.; Telfer A.; Vengris M.; Valkunas L.; Robert B. Lycopene crystalloids exhibit singlet exciton fission in tomatoes. Phys. Chem. Chem. Phys. 2018, 20 (13), 8640–8646. 10.1039/C7CP08460A. PubMed DOI
Kundu A.; Dasgupta J. Photogeneration of Long-Lived Triplet States through Singlet Fission in Lycopene H-Aggregates. J. Phys. Chem. Lett. 2021, 12 (5), 1468–1474. 10.1021/acs.jpclett.0c03301. PubMed DOI
Šímová I.; Chrupková P.; Gardiner A. T.; Koblížek M.; Kloz M.; Polívka T. Femtosecond Stimulated Raman Spectroscopy of Linear Carotenoids. J. Phys. Chem. Lett. 2024, 15 (29), 7466–7472. 10.1021/acs.jpclett.4c01272. PubMed DOI
Llansola-Portoles M. J.; Pascal A. A.; Robert B. Electronic and vibrational properties of carotenoids: from in vitro to in vivo. Journal of The Royal Society Interface 2017, 14 (135), 20170504.10.1098/rsif.2017.0504. PubMed DOI PMC
Mendes-Pinto M. M.; Sansiaume E.; Hashimoto H.; Pascal A. A.; Gall A.; Robert B. Electronic Absorption and Ground State Structure of Carotenoid Molecules. J. Phys. Chem. B 2013, 117 (38), 11015–11021. 10.1021/jp309908r. PubMed DOI
Saito S.; Tasumi M. Normal-coordinate analysis of retinal isomers and assignments of Raman and infrared bands. J. Raman Spectrosc. 1983, 14 (4), 236–245. 10.1002/jrs.1250140405. DOI
Shurvell H. F.; Southby M. C. Infrared and Raman spectra of tetrahydrofuran hydroperoxide. Vib. Spectrosc. 1997, 15 (1), 137–146. 10.1016/S0924-2031(97)00031-3. DOI
Ostroumov E. E.; Reus M. G. M. M.; Holzwarth A. R. On the Nature of the “Dark S*” Excited State of β-Carotene. J. Phys. Chem. A 2011, 115 (16), 3698–3712. 10.1021/jp105385c. PubMed DOI
Staleva H.; Zeeshan M.; Chábera P.; Partali V.; Sliwka H.-R.; Polívka T. Ultrafast Dynamics of Long Homologues of Carotenoid Zeaxanthin. J. Phys. Chem. A 2015, 119 (46), 11304–11312. 10.1021/acs.jpca.5b08460. PubMed DOI
Balevičius V. Jr; Abramavicius D.; Polívka T.; Galestian Pour A.; Hauer J. A Unified Picture of S* in Carotenoids. J. Phys. Chem. Lett. 2016, 7 (17), 3347–3352. 10.1021/acs.jpclett.6b01455. PubMed DOI PMC
Polívka T.; Sundström V. Ultrafast Dynamics of Carotenoid Excited States-From Solution to Natural and Artificial Systems. Chem. Rev. 2004, 104 (4), 2021–2072. 10.1021/cr020674n. PubMed DOI
Accomasso D.; Arslancan S.; Cupellini L.; Granucci G.; Mennucci B. Ultrafast Excited-State Dynamics of Carotenoids and the Role of the SX State. J. Phys. Chem. Lett. 2022, 13 (29), 6762–6769. 10.1021/acs.jpclett.2c01555. PubMed DOI PMC
Chrupková P.; van Stokkum I. H. M.; Friedrich T.; Moldenhauer M.; Budisa N.; Tseng H.-W.; Polívka T.; Cherepanov D. A.; Maksimov E. G.; Kloz M. Raman vibrational signatures of excited states of echinenone in the Orange Carotenoid Protein (OCP) and implications for its photoactivation mechanism. J. Mol. Biol. 2024, 436, 168625.10.1016/j.jmb.2024.168625. PubMed DOI
Feng Y.; Vinogradov I.; Ge N.-H. General noise suppression scheme with reference detection in heterodyne nonlinear spectroscopy. Opt. Express 2017, 25 (21), 26262–26279. 10.1364/OE.25.026262. PubMed DOI
Weißenborn J.; Snellenburg J. J.; Weigand S.; van Stokkum I. H. M.. pyglotaran: a Python library for global and target analysis, 2022. 10.5281/zenodo.4534043. DOI
van Stokkum I. H. M.; Weißenborn J.; Weigand S.; Snellenburg J. J. Pyglotaran: a lego-like Python framework for global and target analysis of time resolved spectra. Photochemical & Photobiological Sciences 2023, 22, 2413–2431. 10.1007/s43630-023-00460-y. PubMed DOI
Retinal to Retinal Energy Transfer in a Bistable Microbial Rhodopsin Dimer