• This record comes from PubMed

Target Analysis Resolves the Ground and Excited State Properties from Femtosecond Stimulated Raman Spectra

. 2024 Sep 19 ; 15 (37) : 9397-9404. [epub] 20240906

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Target analysis is employed to resolve the ground and excited state properties from simultaneously measured Femtosecond Stimulated Raman Spectra (FSRS) and Transient Absorption Spectra (TAS). FSRS is a three-pulse technique, involving picosecond Raman pump pulses and femtosecond visible pump and probe pulses. The TAS are needed to precisely estimate the properties of the Instrument Response Function. The prezero "coherent artifact" present during the overlap of the three pulses is described by a damped oscillation with a frequency (ω - ωn) where ωn is a ground state resonance Raman frequency. Simultaneous target analysis of the FSRS and TAS allows the complete excited state dynamics to be resolved with a time resolution better than 100 fs. The model system studied is the carotenoid lycopene in tetrahydrofuran. The lycopene dynamics show a spectral evolution with seven states, including a biphasic cooling process during the S2-S1 internal conversion, multiple S1 lifetimes, and an S* state decaying with a lifetime of 7 ps.

See more in PubMed

Yoshizawa M.; Kurosawa M. Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering. Phys. Rev. A 1999, 61 (1), 013808.10.1103/PhysRevA.61.013808. DOI

McCamant D. W.; Kim J. E.; Mathies R. A. Vibrational relaxation in beta-carotene probed by picosecond Stokes and anti-Stokes resonance Raman spectroscopy. J. Phys. Chem. A 2002, 106 (25), 6030–6038. 10.1021/jp0203595. PubMed DOI PMC

Kukura P.; McCamant D. W.; Mathies R. A. Femtosecond Time-Resolved Stimulated Raman Spectroscopy of the S2 (1Bu+) Excited State of β-Carotene. J. Phys. Chem. A 2004, 108 (28), 5921–5925. 10.1021/jp0482971. PubMed DOI PMC

Kukura P.; McCamant D. W.; Mathies R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 2007, 58, 461–488. 10.1146/annurev.physchem.58.032806.104456. PubMed DOI

Kloz M.; Weißenborn J.; Polívka T.; Frank H. A.; Kennis J. T. M. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S* state. Phys. Chem. Chem. Phys. 2016, 18 (21), 14619–14628. 10.1039/C6CP01464J. PubMed DOI

Kuramochi H.; Tahara T. Tracking Ultrafast Structural Dynamics by Time-Domain Raman Spectroscopy. J. Am. Chem. Soc. 2021, 143 (26), 9699–9717. 10.1021/jacs.1c02545. PubMed DOI PMC

Batignani G.; Ferrante C.; Fumero G.; Martinati M.; Scopigno T. Femtosecond stimulated Raman spectroscopy. Nature Reviews Methods Primers 2024, 4 (1), 34.10.1038/s43586-024-00314-6. DOI

van Stokkum I. H. M.; Kloz M.; Polli D.; Viola D.; Weißenborn J.; Peerbooms E.; Cerullo G.; Kennis J. T. M. Vibronic dynamics resolved by global and target analysis of ultrafast transient absorption spectra. J. Chem. Phys. 2021, 155 (11), 114113.10.1063/5.0060672. PubMed DOI

Batignani G.; Fumero G.; Pontecorvo E.; Ferrante C.; Mukamel S.; Scopigno T. Genuine Dynamics vs Cross Phase Modulation Artifacts in Femtosecond Stimulated Raman Spectroscopy. ACS Photonics 2019, 6 (2), 492–500. 10.1021/acsphotonics.8b01467. DOI

Hamm P. Coherent effects in femtosecond infrared spectroscopy. Chem. Phys. 1995, 200 (3), 415–429. 10.1016/0301-0104(95)00262-6. DOI

Rondonuwu F. S.; Kakitani Y.; Tamura H.; Koyama Y. Singlet internal conversion processes in the order of 1Bu+→3Ag-→1Bu-→2Ag-→1Ag- in all-trans-spheroidene and lycopene as revealed by subpicosecond time-resolved Raman spectroscopy. Chem. Phys. Lett. 2006, 429 (1), 234–238. 10.1016/j.cplett.2006.07.061. DOI

Taffet E. J.; Lee B. G.; Toa Z. S. D.; Pace N.; Rumbles G.; Southall J.; Cogdell R. J.; Scholes G. D. Carotenoid Nuclear Reorganization and Interplay of Bright and Dark Excited States. J. Phys. Chem. B 2019, 123 (41), 8628–8643. 10.1021/acs.jpcb.9b04027. PubMed DOI

Llansola-Portoles M. J.; Redeckas K.; Streckaité S.; Ilioaia C.; Pascal A. A.; Telfer A.; Vengris M.; Valkunas L.; Robert B. Lycopene crystalloids exhibit singlet exciton fission in tomatoes. Phys. Chem. Chem. Phys. 2018, 20 (13), 8640–8646. 10.1039/C7CP08460A. PubMed DOI

Kundu A.; Dasgupta J. Photogeneration of Long-Lived Triplet States through Singlet Fission in Lycopene H-Aggregates. J. Phys. Chem. Lett. 2021, 12 (5), 1468–1474. 10.1021/acs.jpclett.0c03301. PubMed DOI

Šímová I.; Chrupková P.; Gardiner A. T.; Koblížek M.; Kloz M.; Polívka T. Femtosecond Stimulated Raman Spectroscopy of Linear Carotenoids. J. Phys. Chem. Lett. 2024, 15 (29), 7466–7472. 10.1021/acs.jpclett.4c01272. PubMed DOI

Llansola-Portoles M. J.; Pascal A. A.; Robert B. Electronic and vibrational properties of carotenoids: from in vitro to in vivo. Journal of The Royal Society Interface 2017, 14 (135), 20170504.10.1098/rsif.2017.0504. PubMed DOI PMC

Mendes-Pinto M. M.; Sansiaume E.; Hashimoto H.; Pascal A. A.; Gall A.; Robert B. Electronic Absorption and Ground State Structure of Carotenoid Molecules. J. Phys. Chem. B 2013, 117 (38), 11015–11021. 10.1021/jp309908r. PubMed DOI

Saito S.; Tasumi M. Normal-coordinate analysis of retinal isomers and assignments of Raman and infrared bands. J. Raman Spectrosc. 1983, 14 (4), 236–245. 10.1002/jrs.1250140405. DOI

Shurvell H. F.; Southby M. C. Infrared and Raman spectra of tetrahydrofuran hydroperoxide. Vib. Spectrosc. 1997, 15 (1), 137–146. 10.1016/S0924-2031(97)00031-3. DOI

Ostroumov E. E.; Reus M. G. M. M.; Holzwarth A. R. On the Nature of the “Dark S*” Excited State of β-Carotene. J. Phys. Chem. A 2011, 115 (16), 3698–3712. 10.1021/jp105385c. PubMed DOI

Staleva H.; Zeeshan M.; Chábera P.; Partali V.; Sliwka H.-R.; Polívka T. Ultrafast Dynamics of Long Homologues of Carotenoid Zeaxanthin. J. Phys. Chem. A 2015, 119 (46), 11304–11312. 10.1021/acs.jpca.5b08460. PubMed DOI

Balevičius V. Jr; Abramavicius D.; Polívka T.; Galestian Pour A.; Hauer J. A Unified Picture of S* in Carotenoids. J. Phys. Chem. Lett. 2016, 7 (17), 3347–3352. 10.1021/acs.jpclett.6b01455. PubMed DOI PMC

Polívka T.; Sundström V. Ultrafast Dynamics of Carotenoid Excited States-From Solution to Natural and Artificial Systems. Chem. Rev. 2004, 104 (4), 2021–2072. 10.1021/cr020674n. PubMed DOI

Accomasso D.; Arslancan S.; Cupellini L.; Granucci G.; Mennucci B. Ultrafast Excited-State Dynamics of Carotenoids and the Role of the SX State. J. Phys. Chem. Lett. 2022, 13 (29), 6762–6769. 10.1021/acs.jpclett.2c01555. PubMed DOI PMC

Chrupková P.; van Stokkum I. H. M.; Friedrich T.; Moldenhauer M.; Budisa N.; Tseng H.-W.; Polívka T.; Cherepanov D. A.; Maksimov E. G.; Kloz M. Raman vibrational signatures of excited states of echinenone in the Orange Carotenoid Protein (OCP) and implications for its photoactivation mechanism. J. Mol. Biol. 2024, 436, 168625.10.1016/j.jmb.2024.168625. PubMed DOI

Feng Y.; Vinogradov I.; Ge N.-H. General noise suppression scheme with reference detection in heterodyne nonlinear spectroscopy. Opt. Express 2017, 25 (21), 26262–26279. 10.1364/OE.25.026262. PubMed DOI

Weißenborn J.; Snellenburg J. J.; Weigand S.; van Stokkum I. H. M.. pyglotaran: a Python library for global and target analysis, 2022. 10.5281/zenodo.4534043. DOI

van Stokkum I. H. M.; Weißenborn J.; Weigand S.; Snellenburg J. J. Pyglotaran: a lego-like Python framework for global and target analysis of time resolved spectra. Photochemical & Photobiological Sciences 2023, 22, 2413–2431. 10.1007/s43630-023-00460-y. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...