Multistep 11-cis to All-trans Retinal Photoisomerization in Bestrhodopsin, an Unusual Microbial Rhodopsin
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40637519
PubMed Central
PMC12291454
DOI
10.1021/jacs.5c06216
Knihovny.cz E-resources
- MeSH
- Photochemical Processes MeSH
- Isomerism MeSH
- Retinaldehyde * chemistry MeSH
- Rhodopsins, Microbial * chemistry MeSH
- Stereoisomerism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Retinaldehyde * MeSH
- Rhodopsins, Microbial * MeSH
Rhodopsins constitute a broad class of retinal-binding photoreceptors. Microbial rhodopsins are canonically activated through an all-trans to 13-cis photoisomerization, whereas animal rhodopsins are mostly activated through an 11-cis to all-trans isomerization. Bestrhodopsins constitute a special microbial rhodopsin subfamily, with bistable rhodopsin domains that can be photoswitched between a far red-absorbing state D661 and a green-absorbing state P540. Its photochemistry involves a peculiar all-trans to 11-cis isomerization for the D661 to P540 photoreaction and vice versa. Here, we present the P. antarctica bestrhodopsin 11-cis to all-trans photoreaction as determined by femtosecond-to-submillisecond transient absorption, femtosecond stimulated Raman and flash-photolysis spectroscopy. The primary photoreaction involves ultrafast isomerizations in 240 fs from the 11-cis reactant to a mixture of highly distorted all-trans and 13-cis photoproducts. The 13-cis fraction then thermally isomerizes to a distorted all-trans RSB in 120 ps. We propose bicycle pedal models for the branched photoisomerizations with corotation of the C11═C12 and C13═C14 double bonds. One reactant fraction undergoes bicycle pedal motion aborted at the C13═C14 double bond, resulting in all-trans retinal. The other fraction undergoes a full bicycle pedal motion of both C11═C12 and C13═C14, resulting in 13-cis retinal. The primary products are trapped high up the ground-state potential energy surface with a low energetic barrier that facilitates thermal isomerization from 13-cis to all-trans retinal in 120 ps. All-trans retinal then structurally and energetically relaxes with subsequent time constants of 0.7 and 62 μs and 4.4 ms, along with counterion protonation, completing the P540 to D661 photoreaction.
See more in PubMed
Ernst O. P., Lodowski D. T., Elstner M., Hegemann P., Brown L. S., Kandori H.. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 2014;114(1):126–163. doi: 10.1021/cr4003769. PubMed DOI PMC
Wang Q., Schoenlein R. W., Peteanu L. A., Mathies R. A., Shank C. V.. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science. 1994;266(5184):422–424. doi: 10.1126/science.7939680. PubMed DOI
Schoenlein R. W., Peteanu L. A., Mathies R. A., Shank C. V.. THE 1ST STEP IN VISION - FEMTOSECOND ISOMERIZATION OF RHODOPSIN. Science. 1991;254(5030):412–415. doi: 10.1126/science.1925597. PubMed DOI
Johnson P. J. M., Halpin A., Morizumi T., Prokhorenko V. I., Ernst O. P., Miller R. J. D.. Local vibrational coherences drive the primary photochemistry of vision. Nat. Chem. 2015;7(12):980–986. doi: 10.1038/nchem.2398. PubMed DOI
Polli D., Altoe P., Weingart O., Spillane K. M., Manzoni C., Brida D., Tomasello G., Orlandi G., Kukura P., Mathies R. A.. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature. 2010;467(7314):440–U488. doi: 10.1038/nature09346. PubMed DOI
Mathies R. A., Cruz C. H. B., Pollard W. T., Shank C. V.. Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science. 1988;240(4853):777–779. doi: 10.1126/science.3363359. PubMed DOI
Tahara S., Takeuchi S., Abe-Yoshizumi R., Inoue K., Ohtani H., Kandori H., Tahara T.. Ultrafast Photoreaction Dynamics of a Light-Driven Sodium-Ion-Pumping Retinal Protein from Krokinobacter eikastus Revealed by Femtosecond Time-Resolved Absorption Spectroscopy. J. Phys. Chem. Lett. 2015;6(22):4481–4486. doi: 10.1021/acs.jpclett.5b01994. PubMed DOI
Malakar P., Gholami S., Aarabi M., Rivalta I., Sheves M., Garavelli M., Ruhman S.. Retinal photoisomerization versus counterion protonation in light and dark-adapted bacteriorhodopsin and its primary photoproduct. Nat. Commun. 2024;15(1):2136. doi: 10.1038/s41467-024-46061-w. PubMed DOI PMC
Verhoefen M. K., Bamann C., Blöcher R., Förster U., Bamberg E., Wachtveitl J.. The Photocycle of Channelrhodopsin-2: Ultrafast Reaction Dynamics and Subsequent Reaction Steps. ChemPhyschem. 2010;11(14):3113–3122. doi: 10.1002/cphc.201000181. PubMed DOI
Lenz M. O., Huber R., Schmidt B., Gilch P., Kalmbach R., Engelhard M., Wachtveitl J.. First steps of retinal photoisomerization in proteorhodopsin. Biophys. J. 2006;91(1):255–262. doi: 10.1529/biophysj.105.074690. PubMed DOI PMC
Herbst J., Heyne K., Diller R.. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Science. 2002;297(5582):822–825. doi: 10.1126/science.1072144. PubMed DOI
Kukura P., McCamant D. W., Yoon S., Wandschneider D. B., Mathies R. A.. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science. 2005;310(5750):1006–1009. doi: 10.1126/science.1118379. PubMed DOI
Shim S., Dasgupta J., Mathies R. A.. Femtosecond Time-Resolved Stimulated Raman Reveals the Birth of Bacteriorhodopsin’s J and K Intermediates. J. Am. Chem. Soc. 2009;131(22):7592–7597. doi: 10.1021/ja809137x. PubMed DOI
Hontani Y., Inoue K., Kloz M., Kato Y., Kandori H., Kennis J. T. M.. The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 2016;18(35):24729–24736. doi: 10.1039/C6CP05240A. PubMed DOI
Neumann-Verhoefen M. K., Neumann K., Bamann C., Radu I., Heberle J., Bamberg E., Wachtveitl J.. Ultrafast Infrared Spectroscopy on Channelrhodopsin-2 Reveals Efficient Energy Transfer from the Retinal Chromophore to the Protein. J. Am. Chem. Soc. 2013;135(18):6968–6976. doi: 10.1021/ja400554y. PubMed DOI
Schnedermann C., Muders V., Ehrenberg D., Schlesinger R., Kukura P., Heberle J.. Vibronic Dynamics of the Ultrafast all-trans to 13-cis Photoisomerization of Retinal in Channelrhodopsin-1. J. Am. Chem. Soc. 2016;138(14):4757–4762. doi: 10.1021/jacs.5b12251. PubMed DOI
Nogly P., Weinert T., James D., Carbajo S., Ozerov D., Furrer A., Gashi D., Borin V., Skopintsev P., Jaeger K.. et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science. 2018;361(6398):eaat0094. doi: 10.1126/science.aat0094. PubMed DOI
Kovacs G. N., Colletier J. P., Grunbein M. L., Yang Y., Stensitzki T., Batyuk A., Carbajo S., Doak R. B., Ehrenberg D., Foucar L.. et al. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat. Commun. 2019;10:3177. doi: 10.1038/s41467-019-10758-0. PubMed DOI PMC
Gruhl T., Weinert T., Rodrigues M. J., Milne C. J., Ortolani G., Nass K., Nango E., Sen S., Johnson P. J. M., Cirelli C., Furrer A.. et al. Ultrafast structural changes direct the first molecular events of vision. Nature. 2023;615(7954):939–944. doi: 10.1038/s41586-023-05863-6. PubMed DOI PMC
Ren Z.. Photoinduced isomerization sampling of retinal in bacteriorhodopsin. PNAS Nexus. 2022;1(3):pgac103. doi: 10.1093/pnasnexus/pgac103. PubMed DOI PMC
Gozem S., Luk H. L., Schapiro I., Olivucci M.. Theory and Simulation of the Ultrafast Double-Bond lsomerization of Biological Chromophores. Chem. Rev. 2017;117(22):13502–13565. doi: 10.1021/acs.chemrev.7b00177. PubMed DOI
Sen S., Kar R. K., Borin V. A., Schapiro I.. Insight into the isomerization mechanism of retinal proteins from hybrid quantum mechanics/molecular mechanics simulations. Wiley Int. Rev.-Comput. Mol. Sci. 2022;12(1):1562. doi: 10.1002/wcms.1562. DOI
Yabushita A., Kobayashi T., Tsuda M.. Time-Resolved Spectroscopy of Ultrafast Photoisomerization of Octopus Rhodopsin under Photoexcitation. J. Phys. Chem. B. 2012;116(6):1920–1926. doi: 10.1021/jp209356s. PubMed DOI
Kobayashi T., Kim M., Taiji M., Iwasa T., Nakagawa M., Tsuda M.. Femtosecond spectroscopy of halorhodopsin and rhodopsin in a broad spectral range of 400–1000 nm. J. Phys. Chem. B. 1998;102(1):272–280. doi: 10.1021/jp970705w. DOI
Schnedermann C., Yang X., Liebel M., Spillane K. M., Lugtenburg J., Fernandez I., Valentini A., Schapiro I., Olivucci M., Kukura P.. et al. Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision. Nat. Chem. 2018;10(4):449–455. doi: 10.1038/s41557-018-0014-y. PubMed DOI
Yang X., Manathunga M., Gozem S., Leonard J., Andruniow T., Olivucci M.. Quantum-classical simulations of rhodopsin reveal excited-state population splitting and its effects on quantum efficiency. Nat. Chem. 2022;14(4):441–449. doi: 10.1038/s41557-022-00892-6. PubMed DOI PMC
Gai F., Hasson K. C., McDonald J. C., Anfinrud P. A.. Chemical dynamics in proteins: The photoisomerization of retinal in bacteriorhodopsin. Science. 1998;279(5358):1886–1891. doi: 10.1126/science.279.5358.1886. PubMed DOI
Hontani Y., Marazzi M., Stehfest K., Mathes T., van Stokkum I. H. M., Elstner M., Hegemann P., Kennis J. T. M.. Reaction dynamics of the chimeric channelrhodopsin C1C2. Sci. Rep. 2017;7(1):7217. doi: 10.1038/s41598-017-07363-w. PubMed DOI PMC
Kennis J. T. M., Larsen D. S., Ohta K., Facciotti M. T., Glaeser R. M., Fleming G. R.. Ultrafast protein dynamics of bacteriorhodopsin probed by photon echo and transient absorption spectroscopy. J. Phys. Chem. B. 2002;106(23):6067–6080. doi: 10.1021/jp014681b. DOI
Hasson K. C., Gai F., Anfinrud P. A.. The photoisomerization of retinal in bacteriorhodopsin: Experimental evidence for a three-state model. Proc. Natl. Acad. Sci. U. S. A. 1996;93(26):15124–15129. doi: 10.1073/pnas.93.26.15124. PubMed DOI PMC
Malakar P., Das I., Bhattacharya S., Harris A., Sheves M., Brown L. S., Ruhman S.. Bidirectional Photochemistry of Antarctic Microbial Rhodopsin: Emerging Trend of Ballistic Photoisomerization from the 13-cis Resting State. J. Phys. Chem. Lett. 2022;13(34):8134–8140. doi: 10.1021/acs.jpclett.2c01974. PubMed DOI PMC
Chang C. F., Kuramochi H., Singh M., Abe-Yoshizumi R., Tsukuda T., Kandori H., Tahara T.. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins. Angew. Chem., Int. Ed. 2022;61(2):e202111930. doi: 10.1002/anie.202111930. PubMed DOI
Tittor J., Oesterhelt D.. The quantum yield of bacteriorhodopsin. FEBS Lett. 1990;263(2):269–273. doi: 10.1016/0014-5793(90)81390-A. DOI
Kaziannis S., Broser M., Stokkum I., Dostal J., Busse W., Munhoven A., Bernardo C., Kloz M., Hegemann P., Kennis J. T. M.. Multiple retinal isomerizations during the early phase of the bestrhodopsin photoreaction. Proc. Natl. Acad. Sci. U. S. A. 2024;121(12):e2318996121. doi: 10.1073/pnas.2318996121. PubMed DOI PMC
Van Stokkum I. H. M., Hontani Y., Vierock J., Krause B. S., Hegemann P., Kennis J. T. M.. Reaction Dynamics in the Chrimson Channelrhodopsin: Observation of Product-State Evolution and Slow Diffusive Protein Motions. J. Phys. Chem. Lett. 2023;14:1485–1493. doi: 10.1021/acs.jpclett.2c03110. PubMed DOI PMC
Rozenberg A., Kaczmarczyk I., Matzov D., Vierock J., Nagata T., Sugiura M., Katayama K., Kawasaki Y., Konno M., Nagasaka Y., Aoyama M.. et al. Rhodopsin-bestrophin fusion proteins from unicellular algae form gigantic pentameric ion channels. Nat. Struct. Mol. Biol. 2022;29(6):592–603. doi: 10.1038/s41594-022-00783-x. PubMed DOI
Broser M., Spreen A., Konold P. E., Peter E., Adam S., Borin V., Schapiro I., Seifert R., Kennis J. T. M., Sierra Y. A. B., Hegemann P.. et al. NeoR, a near-infrared absorbing rhodopsin. Nat. Commun. 2020;11(1):5682. doi: 10.1038/s41467-020-19375-8. PubMed DOI PMC
Broser M., Busse W., Spreen A., Hegemann P.. Diversity of rhodopsin cyclases in zoospore-forming fungi. Proc. Natl. Acad. Sci. U.S.A. 2023;120:e2310600120. doi: 10.1073/pnas.2310600120. PubMed DOI PMC
Broser M., Andruniów T., Kraskov A., Palombo R., Katz S., Kloz M., Dostál J., Bernardo C., Kennis J. T. M., Hegemann P.. et al. Experimental Assessment of the Electronic and Geometrical Structure of a Near-Infrared Absorbing and Highly Fluorescent Microbial Rhodopsin. J. Phys. Chem. Lett. 2023;14:9291–9295. doi: 10.1021/acs.jpclett.3c02167. PubMed DOI
Sugiura M., Ishikawa K., Katayama K., Sumii Y., Abe-Yoshizumi R., Tsunoda S. P., Furutani Y., Shibata N., Brown L. S., Kandori H.. Unusual Photoisomerization Pathway in a Near-Infrared Light Absorbing Enzymerhodopsin. J. Phys. Chem. Lett. 2022;13(40):9539–9543. doi: 10.1021/acs.jpclett.2c02334. PubMed DOI
Palombo R., Barneschi L., Pedraza-González L., Padula D., Schapiro I., Olivucci M.. Retinal chromophore charge delocalization and confinement explain the extreme photophysics of Neorhodopsin. Nat. Commun. 2022;13(1):6652. doi: 10.1038/s41467-022-33953-y. PubMed DOI PMC
van Stokkum I. H. M., Dostal J., Do T. N., Fu L. F., Madej G., Ziegler C., Hegemann P., Kloz M., Broser M., Kennis J. T. M.. Retinal to Retinal Energy Transfer in a Bistable Microbial Rhodopsin Dimer. J. Am. Chem. Soc. 2025;147(17):14468–14480. doi: 10.1021/jacs.5c01276. PubMed DOI PMC
Kukura P., McCamant D. W., Mathies R. A.. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 2007;58:461–488. doi: 10.1146/annurev.physchem.58.032806.104456. PubMed DOI
Urui T., Mizuno M., Otomo A., Kandori H., Mizutani Y.. Resonance Raman Determination of Chromophore Structures of Heliorhodopsin Photointermediates. J. Phys. Chem. B. 2021;125(26):7155–7162. doi: 10.1021/acs.jpcb.1c04010. PubMed DOI
Shibata K., Oda K., Nishizawa T., Hazama Y., Ono R., Takaramoto S., Bagherzadeh R., Yaw H., Nureki O., Inoue K., Akiyama H.. et al. Twisting and Protonation of Retinal Chromophore Regulate Channel Gating of Channelrhodopsin C1C2. J. Am. Chem. Soc. 2023;145(19):10779–10789. doi: 10.1021/jacs.3c01879. PubMed DOI
Kloz M., Weissenborn J., Polivka T., Frank H. A., Kennis J. T. M.. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S-star state. Phys. Chem. Chem. Phys. 2016;18(21):14619–14628. doi: 10.1039/C6CP01464J. PubMed DOI
Hontani Y., Kloz M., Polivka T., Shukla M. K., Sobotka R., Kennis J. T. M.. Molecular Origin of Photoprotection in Cyanobacteria Probed by Watermarked Femtosecond Stimulated Raman Spectroscopy. J. Phys. Chem. Lett. 2018;9(7):1788–1792. doi: 10.1021/acs.jpclett.8b00663. PubMed DOI PMC
Vivancos J. M. A., Van Stokkum I. H. M., Saccon F., Hontani Y., Kloz M., Ruban A., van Grondelle R., Kennis J. T. M.. Unraveling the Excited-State Dynamics and Light-Harvesting Functions of Xanthophylls in Light-Harvesting Complex II Using Femtosecond Stimulated Raman Spectroscopy. J. Am. Chem. Soc. 2020;142(41):17346–17355. doi: 10.1021/jacs.0c04619. PubMed DOI PMC
Hontani Y., Mehlhorn J., Domratcheva T., Beck S., Kloz M., Hegemann P., Mathes T., Kennis J. T. M.. Spectroscopic and Computational Observation of Glutamine Tautomerization in the Blue Light Sensing Using Flavin Domain Photoreaction. J. Am. Chem. Soc. 2023;145(2):1040–1052. doi: 10.1021/jacs.2c10621. PubMed DOI PMC
Hontani Y., Broser M., Luck M., Weissenborn J., Kloz M., Hegemann P., Kennis J. T. M.. Dual Photoisomerization on Distinct Potential Energy Surfaces in a UV-Absorbing Rhodopsin. J. Am. Chem. Soc. 2020;142(26):11464–11473. doi: 10.1021/jacs.0c03229. PubMed DOI PMC
Liu Y. L., Chaudhari A. S., Chatterjee A., Andrikopoulos P. C., Picchiotti A., Rebarz M., Kloz M., Lorenz-Fonfria V. A., Schneider B., Fuertes G.. Sub-Millisecond Photoinduced Dynamics of Free and EL222-Bound FMN by Stimulated Raman and Visible Absorption Spectroscopies. Biomolecules. 2023;13(1):161. doi: 10.3390/biom13010161. PubMed DOI PMC
Konold P. E., van Stokkum I. H. M., Muzzopappa F., Wilson A., Groot M. L., Kirilovsky D., Kennis J. T. M. P. M.. Timing of Protein Secondary Structure Dynamics and Carotenoid Translocation in the Orange Carotenoid Protein. J. Am. Chem. Soc. 2019;141(1):520–530. doi: 10.1021/jacs.8b11373. PubMed DOI PMC
Mathes T., Ravensbergen J., Kloz M., Gleichmann T., Gallagher K. D., Woitowich N. C., St Peter R., Kovaleva S. E., Stojkovic E. A., Kennis J. T. M.. Femto- to Microsecond Photodynamics of an Unusual Bacteriophytochrome. J. Phys. Chem. Lett. 2015;6(2):239–243. doi: 10.1021/jz502408n. PubMed DOI
Brust R., Lukacs A., Haigney A., Addison K., Gil A., Towrie M., Clark I. P., Greetham G. M., Tonge P. J., Meech S. R.. Proteins in Action: Femtosecond to Millisecond Structural Dynamics of a Photoactive Flavoprotein. J. Am. Chem. Soc. 2013;135(43):16168–16174. doi: 10.1021/ja407265p. PubMed DOI PMC
Konold P. E., Mathes T., Weissenhorn J., Groot M. L., Hegemann P., Kennis J. T. M.. Unfolding of the C-Terminal Jα Helix in the LOV2 Photoreceptor Domain Observed by Time-Resolved Vibrational Spectroscopy. J. Phys. Chem. Lett. 2016;7(17):3472–3476. doi: 10.1021/acs.jpclett.6b01484. PubMed DOI
Mathes T., Heilmann M., Pandit A., Zhu J. Y., Ravensbergen J., Kloz M., Fu Y. A., Smith B. O., Christie J. M., Jenkins G. I.. et al. Proton-Coupled Electron Transfer Constitutes the Photoactivation Mechanism of the Plant Photoreceptor UVR8. J. Am. Chem. Soc. 2015;137(25):8113–8120. doi: 10.1021/jacs.5b01177. PubMed DOI
Ganapathy S., Opdam L., Hontani Y., Frehan S., Chen Q., Hellingwerf K. J., de Groot H. J. M., Kennis J. T. M., de Grip W. J.. Membrane matters: The impact of a nanodisc-bilayer or a detergent microenvironment on the properties of two eubacterial rhodopsins. Biochim. Et Biophys. acta-Biomembr. 2020;1862:183113. doi: 10.1016/j.bbamem.2019.183113. PubMed DOI
Hontani Y., Ganapathy S., Frehan S., Kloz M., de Grip W. J., Kennis J. T. M.. Strong pH-Dependent Near-Infrared Fluorescence in a Microbial Rhodopsin Reconstituted with a Red-Shifting Retinal Analogue. J. Phys. Chem. Lett. 2018;9(22):6469–6474. doi: 10.1021/acs.jpclett.8b02780. PubMed DOI PMC
Hontani Y., Ganapathy S., Frehan S., Kloz M., de Grip W. J., Kennis J. T. M.. Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin. J. Phys. Chem. B. 2019;123(19):4242–4250. doi: 10.1021/acs.jpcb.9b01136. PubMed DOI PMC
Berera R., van Grondelle R., Kennis J. T. M.. Ultrafast transient absorption spectroscopy: Principles and application to photosynthetic systems. Photosynth. Res. 2009;101(2–3):105–118. doi: 10.1007/s11120-009-9454-y. PubMed DOI PMC
Dokukina I., Weingart O.. Spectral properties and isomerisation path of retinal in C1C2 channelrhodopsin. Phys. Chem. Chem. Phys. 2015;17(38):25142–25150. doi: 10.1039/C5CP02650D. PubMed DOI
Smith S. O., Pardoen J. A., Mulder P. P. J., Curry B., Lugtenburg J., Mathies R.. Chromophore structure in bacteriorhodopsins-o640 photointermediate. Biochemistry. 1983;22(26):6141–6148. doi: 10.1021/bi00295a016. DOI
Smith S. O., Pardoen J. A., Lugtenburg J., Mathies R. A.. Vibrational analysis of the 13-cis-retinal chromophore in dark-adapted bacteriorhodopsin. J. Phys. Chem. 1987;91(4):804–819. doi: 10.1021/j100288a011. DOI
Smith S. O., Mathies R. A.. Resonance raman-spectra of the acidified and deionized forms of bacteriorhodopsin. Biophys. J. 1985;47(2):251–254. doi: 10.1016/S0006-3495(85)83899-6. PubMed DOI PMC
Smith S. O., Braiman M. S., Myers A. B., Pardoen J. A., Courtin J. M. L., Winkel C., Lugtenburg J., Mathies R. A.. Vibrational analysis of the all-trans-retinal chromophore in light-adapted bacteriorhodopsin. J. Am. Chem. Soc. 1987;109(10):3108–3125. doi: 10.1021/ja00244a038. DOI
Nakamizo Y., Fujisawa T., Kikukawa T., Okamura A., Baba H., Unno M.. Low-temperature Raman spectroscopy of sodium-pump rhodopsin from Indibacter alkaliphilus: insight of Na+ binding for active Na+ transport. Phys. Chem. Chem. Phys. 2021;23(3):2072–2079. doi: 10.1039/D0CP05652A. PubMed DOI
Kajimoto K., Kikukawa T., Nakashima H., Yamaryo H., Saito Y., Fujisawa T., Demura M., Unno M.. Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus. J. Phys. Chem. B. 2017;121(17):4431–4437. doi: 10.1021/acs.jpcb.7b02421. PubMed DOI
Fujisawa T., Kiyota H., Kikukawa T., Unno M.. Low-Temperature Raman Spectroscopy of Halorhodopsin from Natronomonas pharaonis: Structural Discrimination of Blue-Shifted and Red-Shifted Photoproducts. Biochemistry. 2019;58(40):4159–4167. doi: 10.1021/acs.biochem.9b00643. PubMed DOI
Fujisawa T., Abe M., Tamogami J., Kikukawa T., Kamo N., Unno M.. Low-temperature Raman spectroscopy reveals small chromophore distortion in primary photointermediate of proteorhodopsin. FEBS Lett. 2018;592(18):3054–3061. doi: 10.1002/1873-3468.13219. PubMed DOI
Luck M., Mathes T., Bruun S., Fudim R., Hagedorn R., Tra M. T. N., Kateriya S., Kennis J. T. M., Hildebrandt P., Hegemann P.. A Photochromic Histidine Kinase Rhodopsin (HKR1) That Is Bimodally Switched by Ultraviolet and Blue Light. J. Biol. Chem. 2012;287(47):40083–40090. doi: 10.1074/jbc.M112.401604. PubMed DOI PMC
Bruun S., Stoeppler D., Keidel A., Kuhlmann U., Luck M., Diehl A., Geiger M. A., Woodmansee D., Trauner D., Hegemann P.. et al. Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the all-trans and 13-cis Retinal Isomers. Biochemistry. 2015;54(35):5389–5400. doi: 10.1021/acs.biochem.5b00597. PubMed DOI
Yi A., Li H., Mamaeva N., De Cordoba R. E. F., Lugtenburg J., DeGrip W. J., Spudich J. L., Rothschild K. J.. Structural Changes in an Anion Channelrhodopsin: Formation of the K and L Intermediates at 80 K. Biochemistry. 2017;56(16):2197–2208. doi: 10.1021/acs.biochem.7b00002. PubMed DOI PMC
Ogren J. I., Yi A., Mamaev S., Li H., Lugtenburg J., DeGrip W. J., Spudich J. L., Rothschild K. J.. Comparison of the Structural Changes Occurring during the Primary Phototransition of Two Different Channelrhodopsins from Chlamydomonas Algae. Biochemistry. 2015;54(2):377–388. doi: 10.1021/bi501243y. PubMed DOI PMC
McCamant D. W., Kukura P., Mathies R. A.. Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin. J. Phys. Chem. B. 2005;109(20):10449–10457. doi: 10.1021/jp050095x. PubMed DOI PMC
Eyring G., Curry B., Broek A., Lugtenburg J., Mathies R.. Assignment and interpretation of hydrogen out-of-plane vibrations in the resonance raman-spectra of rhodopsin and bathorhodopsin. Biochemistry. 1982;21(2):384–393. doi: 10.1021/bi00531a028. PubMed DOI
Palings I., Vandenberg E. M. M., Lugtenburg J., Mathies R. A.. Complete assignment of the hydrogen out-of-plane wagging vibrations of bathorhodopsin - chromophore structure and energy-storage in the primary photoproduct of vision. Biochemistry. 1989;28(4):1498–1507. doi: 10.1021/bi00430a012. PubMed DOI
Yan E. C. Y., Ganim Z., Kazmi M. A., Chang B. S. W., Sakmar T. P., Mathies R. A.. Resonance Raman analysis of the mechanism of energy storage and chromophore distortion in the primary visual photoproduct. Biochemistry. 2004;43(34):10867–10876. doi: 10.1021/bi0400148. PubMed DOI PMC
Altoe P., Cembran A., Olivucci M., Garavelli M.. Aborted double bicycle-pedal isomerization with hydrogen bond breaking is the primary event of bacteriorhodopsin proton pumping. Proc. Natl. Acad. Sci. U. S. A. 2010;107(47):20172–20177. doi: 10.1073/pnas.1007000107. PubMed DOI PMC
Frutos L. M., Andruniów T., Santoro F., Ferré N., Olivucci M.. Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proc. Natl. Acad. Sci. U. S. A. 2007;104(19):7764–7769. doi: 10.1073/pnas.0701732104. PubMed DOI PMC
Migani A., Sinicropi A., Ferré N., Cembran A., Garavelli M., Olivucci M.. Structure of the intersection space associated with Z/E photoisomerization of retinal in rhodopsin proteins. Faraday Discuss. 2004;127:179–191. doi: 10.1039/B315217K. PubMed DOI
Stehfest K., Hegemann P.. Evolution of the Channelrhodopsin Photocycle Model. ChemPhyschem. 2010;11(6):1120–1126. doi: 10.1002/cphc.200900980. PubMed DOI
Palombo R., Barneschi L., Pedraza-González L., Yang X. C., Olivucci M.. Picosecond quantum-classical dynamics reveals that the coexistence of light-induced microbial and animal chromophore rotary motion modulates the isomerization quantum yield of heliorhodopsin. Phys. Chem. Chem. Phys. 2024;26(13):10343–10356. doi: 10.1039/D4CP00193A. PubMed DOI
Peteanu L. A., Schoenlein R. W., Wang Q., Mathies R. A., Shank C. V.. The 1st step in vision occurs in femtoseconds - complete blue and red spectral studies. Proc. Natl. Acad. Sci. U. S. A. 1993;90(24):11762–11766. doi: 10.1073/pnas.90.24.11762. PubMed DOI PMC
Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamp R. E., Yamamoto M.. et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000;289(5480):739–745. doi: 10.1126/science.289.5480.739. PubMed DOI
Okada T., Sugihara M., Bondar A. N., Elstner M., Entel P., Buss V.. The retinal conformation and its environment in rhodopsin in light of a new 2.2 angstrom crystal structure. J. Mol. Biol. 2004;342(2):571–583. doi: 10.1016/j.jmb.2004.07.044. PubMed DOI
Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K.. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 1999;291(4):899–911. doi: 10.1006/jmbi.1999.3027. PubMed DOI
Weingart O., Altoè P., Stenta M., Bottoni A., Orlandi G., Garavelli M.. Product formation in rhodopsin by fast hydrogen motions. Phys. Chem. Chem. Phys. 2011;13(9):3645–3648. doi: 10.1039/c0cp02496a. PubMed DOI
Cembran A., Bernardi F., Olivucci M., Garavelli M.. Counterion controlled photoisomerization of retinal chromophore models: a computational investigation. J. Am. Chem. Soc. 2004;126(49):16018–16037. doi: 10.1021/ja048782+. PubMed DOI
Eyring G., Curry B., Mathies R., Broek A., Lugtenburg J.. Assignment of the anomalous resonance raman vibrations of bathorhodopsin. J. Am. Chem. Soc. 1980;102(16):5390–5392. doi: 10.1021/ja00536a046. DOI
Chosrowjan H., Mataga N., Shibata Y., Tachibanaki S., Kandori H., Shichida Y., Okada T., Kouyama T.. Rhodopsin emission in real time: A new aspect of the primary event in vision. J. Am. Chem. Soc. 1998;120(37):9706–9707. doi: 10.1021/ja981659w. DOI
Polli D., Weingart O., Brida D., Poli E., Maiuri M., Spillane K. M., Bottoni A., Kukura P., Mathies R. A., Cerullo G.. et al. Wavepacket Splitting and Two-Pathway Deactivation in the Photoexcited Visual Pigment Isorhodopsin. Angewandte Chem.-Int. Ed. 2014;53(9):2504–2507. doi: 10.1002/anie.201309867. PubMed DOI
Schapiro I., Weingart O., Buss V.. Bicycle-Pedal Isomerization in a Rhodopsin Chromophore Model. J. Am. Chem. Soc. 2009;131(1):16–17. doi: 10.1021/ja805586z. PubMed DOI
Seltzer S.. Mndo barrier heights for catalyzed bicycle-pedal, hula-twist, and ordinary cis-trans isomerizations of protonated retinal schiff-base. J. Am. Chem. Soc. 1987;109(6):1627–1631. doi: 10.1021/ja00240a004. DOI
Dormans G. J. M., Groenenboom G. C., Vandorst W. C. A., Buck H. M.. A Quantum chemical study on the mechanism of cis trans isomerization in retinal-like protonated schiff-bases. J. Am. Chem. Soc. 1988;110(5):1406–1415. doi: 10.1021/ja00213a012. DOI
Feng Y., Vinogradov I., Ge N. H.. General noise suppression scheme with reference detection in heterodyne nonlinear spectroscopy. Opt. Express. 2017;25(21):26262–26279. doi: 10.1364/OE.25.026262. PubMed DOI
van Stokkum I. H. M., Kloz M., Polli D., Viola D., Weissenborn J., Peerbooms E., Cerullo G., Kennis J. T. M.. Vibronic dynamics resolved by global and target analysis of ultrafast transient absorption spectra. J. Chem. Phys. 2021;155(11):114113. doi: 10.1063/5.0060672. PubMed DOI
van Stokkum I. H. M., Snellenburg J. J., Chrupková P., Dostal J., Weigand S., Weissenborn J., Kennis J. T. M., Kloz M.. Target Analysis Resolves the Ground and Excited State Properties from Femtosecond Stimulated Raman Spectra. J. Phys. Chem. Lett. 2024;15(37):9397–9404. doi: 10.1021/acs.jpclett.4c01555. PubMed DOI PMC