• This record comes from PubMed

Multistep 11-cis to All-trans Retinal Photoisomerization in Bestrhodopsin, an Unusual Microbial Rhodopsin

. 2025 Jul 23 ; 147 (29) : 25571-25583. [epub] 20250710

Language English Country United States Media print-electronic

Document type Journal Article

Rhodopsins constitute a broad class of retinal-binding photoreceptors. Microbial rhodopsins are canonically activated through an all-trans to 13-cis photoisomerization, whereas animal rhodopsins are mostly activated through an 11-cis to all-trans isomerization. Bestrhodopsins constitute a special microbial rhodopsin subfamily, with bistable rhodopsin domains that can be photoswitched between a far red-absorbing state D661 and a green-absorbing state P540. Its photochemistry involves a peculiar all-trans to 11-cis isomerization for the D661 to P540 photoreaction and vice versa. Here, we present the P. antarctica bestrhodopsin 11-cis to all-trans photoreaction as determined by femtosecond-to-submillisecond transient absorption, femtosecond stimulated Raman and flash-photolysis spectroscopy. The primary photoreaction involves ultrafast isomerizations in 240 fs from the 11-cis reactant to a mixture of highly distorted all-trans and 13-cis photoproducts. The 13-cis fraction then thermally isomerizes to a distorted all-trans RSB in 120 ps. We propose bicycle pedal models for the branched photoisomerizations with corotation of the C11═C12 and C13═C14 double bonds. One reactant fraction undergoes bicycle pedal motion aborted at the C13═C14 double bond, resulting in all-trans retinal. The other fraction undergoes a full bicycle pedal motion of both C11═C12 and C13═C14, resulting in 13-cis retinal. The primary products are trapped high up the ground-state potential energy surface with a low energetic barrier that facilitates thermal isomerization from 13-cis to all-trans retinal in 120 ps. All-trans retinal then structurally and energetically relaxes with subsequent time constants of 0.7 and 62 μs and 4.4 ms, along with counterion protonation, completing the P540 to D661 photoreaction.

See more in PubMed

Ernst O. P., Lodowski D. T., Elstner M., Hegemann P., Brown L. S., Kandori H.. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 2014;114(1):126–163. doi: 10.1021/cr4003769. PubMed DOI PMC

Wang Q., Schoenlein R. W., Peteanu L. A., Mathies R. A., Shank C. V.. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science. 1994;266(5184):422–424. doi: 10.1126/science.7939680. PubMed DOI

Schoenlein R. W., Peteanu L. A., Mathies R. A., Shank C. V.. THE 1ST STEP IN VISION - FEMTOSECOND ISOMERIZATION OF RHODOPSIN. Science. 1991;254(5030):412–415. doi: 10.1126/science.1925597. PubMed DOI

Johnson P. J. M., Halpin A., Morizumi T., Prokhorenko V. I., Ernst O. P., Miller R. J. D.. Local vibrational coherences drive the primary photochemistry of vision. Nat. Chem. 2015;7(12):980–986. doi: 10.1038/nchem.2398. PubMed DOI

Polli D., Altoe P., Weingart O., Spillane K. M., Manzoni C., Brida D., Tomasello G., Orlandi G., Kukura P., Mathies R. A.. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature. 2010;467(7314):440–U488. doi: 10.1038/nature09346. PubMed DOI

Mathies R. A., Cruz C. H. B., Pollard W. T., Shank C. V.. Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science. 1988;240(4853):777–779. doi: 10.1126/science.3363359. PubMed DOI

Tahara S., Takeuchi S., Abe-Yoshizumi R., Inoue K., Ohtani H., Kandori H., Tahara T.. Ultrafast Photoreaction Dynamics of a Light-Driven Sodium-Ion-Pumping Retinal Protein from Krokinobacter eikastus Revealed by Femtosecond Time-Resolved Absorption Spectroscopy. J. Phys. Chem. Lett. 2015;6(22):4481–4486. doi: 10.1021/acs.jpclett.5b01994. PubMed DOI

Malakar P., Gholami S., Aarabi M., Rivalta I., Sheves M., Garavelli M., Ruhman S.. Retinal photoisomerization versus counterion protonation in light and dark-adapted bacteriorhodopsin and its primary photoproduct. Nat. Commun. 2024;15(1):2136. doi: 10.1038/s41467-024-46061-w. PubMed DOI PMC

Verhoefen M. K., Bamann C., Blöcher R., Förster U., Bamberg E., Wachtveitl J.. The Photocycle of Channelrhodopsin-2: Ultrafast Reaction Dynamics and Subsequent Reaction Steps. ChemPhyschem. 2010;11(14):3113–3122. doi: 10.1002/cphc.201000181. PubMed DOI

Lenz M. O., Huber R., Schmidt B., Gilch P., Kalmbach R., Engelhard M., Wachtveitl J.. First steps of retinal photoisomerization in proteorhodopsin. Biophys. J. 2006;91(1):255–262. doi: 10.1529/biophysj.105.074690. PubMed DOI PMC

Herbst J., Heyne K., Diller R.. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Science. 2002;297(5582):822–825. doi: 10.1126/science.1072144. PubMed DOI

Kukura P., McCamant D. W., Yoon S., Wandschneider D. B., Mathies R. A.. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science. 2005;310(5750):1006–1009. doi: 10.1126/science.1118379. PubMed DOI

Shim S., Dasgupta J., Mathies R. A.. Femtosecond Time-Resolved Stimulated Raman Reveals the Birth of Bacteriorhodopsin’s J and K Intermediates. J. Am. Chem. Soc. 2009;131(22):7592–7597. doi: 10.1021/ja809137x. PubMed DOI

Hontani Y., Inoue K., Kloz M., Kato Y., Kandori H., Kennis J. T. M.. The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 2016;18(35):24729–24736. doi: 10.1039/C6CP05240A. PubMed DOI

Neumann-Verhoefen M. K., Neumann K., Bamann C., Radu I., Heberle J., Bamberg E., Wachtveitl J.. Ultrafast Infrared Spectroscopy on Channelrhodopsin-2 Reveals Efficient Energy Transfer from the Retinal Chromophore to the Protein. J. Am. Chem. Soc. 2013;135(18):6968–6976. doi: 10.1021/ja400554y. PubMed DOI

Schnedermann C., Muders V., Ehrenberg D., Schlesinger R., Kukura P., Heberle J.. Vibronic Dynamics of the Ultrafast all-trans to 13-cis Photoisomerization of Retinal in Channelrhodopsin-1. J. Am. Chem. Soc. 2016;138(14):4757–4762. doi: 10.1021/jacs.5b12251. PubMed DOI

Nogly P., Weinert T., James D., Carbajo S., Ozerov D., Furrer A., Gashi D., Borin V., Skopintsev P., Jaeger K.. et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science. 2018;361(6398):eaat0094. doi: 10.1126/science.aat0094. PubMed DOI

Kovacs G. N., Colletier J. P., Grunbein M. L., Yang Y., Stensitzki T., Batyuk A., Carbajo S., Doak R. B., Ehrenberg D., Foucar L.. et al. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat. Commun. 2019;10:3177. doi: 10.1038/s41467-019-10758-0. PubMed DOI PMC

Gruhl T., Weinert T., Rodrigues M. J., Milne C. J., Ortolani G., Nass K., Nango E., Sen S., Johnson P. J. M., Cirelli C., Furrer A.. et al. Ultrafast structural changes direct the first molecular events of vision. Nature. 2023;615(7954):939–944. doi: 10.1038/s41586-023-05863-6. PubMed DOI PMC

Ren Z.. Photoinduced isomerization sampling of retinal in bacteriorhodopsin. PNAS Nexus. 2022;1(3):pgac103. doi: 10.1093/pnasnexus/pgac103. PubMed DOI PMC

Gozem S., Luk H. L., Schapiro I., Olivucci M.. Theory and Simulation of the Ultrafast Double-Bond lsomerization of Biological Chromophores. Chem. Rev. 2017;117(22):13502–13565. doi: 10.1021/acs.chemrev.7b00177. PubMed DOI

Sen S., Kar R. K., Borin V. A., Schapiro I.. Insight into the isomerization mechanism of retinal proteins from hybrid quantum mechanics/molecular mechanics simulations. Wiley Int. Rev.-Comput. Mol. Sci. 2022;12(1):1562. doi: 10.1002/wcms.1562. DOI

Yabushita A., Kobayashi T., Tsuda M.. Time-Resolved Spectroscopy of Ultrafast Photoisomerization of Octopus Rhodopsin under Photoexcitation. J. Phys. Chem. B. 2012;116(6):1920–1926. doi: 10.1021/jp209356s. PubMed DOI

Kobayashi T., Kim M., Taiji M., Iwasa T., Nakagawa M., Tsuda M.. Femtosecond spectroscopy of halorhodopsin and rhodopsin in a broad spectral range of 400–1000 nm. J. Phys. Chem. B. 1998;102(1):272–280. doi: 10.1021/jp970705w. DOI

Schnedermann C., Yang X., Liebel M., Spillane K. M., Lugtenburg J., Fernandez I., Valentini A., Schapiro I., Olivucci M., Kukura P.. et al. Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision. Nat. Chem. 2018;10(4):449–455. doi: 10.1038/s41557-018-0014-y. PubMed DOI

Yang X., Manathunga M., Gozem S., Leonard J., Andruniow T., Olivucci M.. Quantum-classical simulations of rhodopsin reveal excited-state population splitting and its effects on quantum efficiency. Nat. Chem. 2022;14(4):441–449. doi: 10.1038/s41557-022-00892-6. PubMed DOI PMC

Gai F., Hasson K. C., McDonald J. C., Anfinrud P. A.. Chemical dynamics in proteins: The photoisomerization of retinal in bacteriorhodopsin. Science. 1998;279(5358):1886–1891. doi: 10.1126/science.279.5358.1886. PubMed DOI

Hontani Y., Marazzi M., Stehfest K., Mathes T., van Stokkum I. H. M., Elstner M., Hegemann P., Kennis J. T. M.. Reaction dynamics of the chimeric channelrhodopsin C1C2. Sci. Rep. 2017;7(1):7217. doi: 10.1038/s41598-017-07363-w. PubMed DOI PMC

Kennis J. T. M., Larsen D. S., Ohta K., Facciotti M. T., Glaeser R. M., Fleming G. R.. Ultrafast protein dynamics of bacteriorhodopsin probed by photon echo and transient absorption spectroscopy. J. Phys. Chem. B. 2002;106(23):6067–6080. doi: 10.1021/jp014681b. DOI

Hasson K. C., Gai F., Anfinrud P. A.. The photoisomerization of retinal in bacteriorhodopsin: Experimental evidence for a three-state model. Proc. Natl. Acad. Sci. U. S. A. 1996;93(26):15124–15129. doi: 10.1073/pnas.93.26.15124. PubMed DOI PMC

Malakar P., Das I., Bhattacharya S., Harris A., Sheves M., Brown L. S., Ruhman S.. Bidirectional Photochemistry of Antarctic Microbial Rhodopsin: Emerging Trend of Ballistic Photoisomerization from the 13-cis Resting State. J. Phys. Chem. Lett. 2022;13(34):8134–8140. doi: 10.1021/acs.jpclett.2c01974. PubMed DOI PMC

Chang C. F., Kuramochi H., Singh M., Abe-Yoshizumi R., Tsukuda T., Kandori H., Tahara T.. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins. Angew. Chem., Int. Ed. 2022;61(2):e202111930. doi: 10.1002/anie.202111930. PubMed DOI

Tittor J., Oesterhelt D.. The quantum yield of bacteriorhodopsin. FEBS Lett. 1990;263(2):269–273. doi: 10.1016/0014-5793(90)81390-A. DOI

Kaziannis S., Broser M., Stokkum I., Dostal J., Busse W., Munhoven A., Bernardo C., Kloz M., Hegemann P., Kennis J. T. M.. Multiple retinal isomerizations during the early phase of the bestrhodopsin photoreaction. Proc. Natl. Acad. Sci. U. S. A. 2024;121(12):e2318996121. doi: 10.1073/pnas.2318996121. PubMed DOI PMC

Van Stokkum I. H. M., Hontani Y., Vierock J., Krause B. S., Hegemann P., Kennis J. T. M.. Reaction Dynamics in the Chrimson Channelrhodopsin: Observation of Product-State Evolution and Slow Diffusive Protein Motions. J. Phys. Chem. Lett. 2023;14:1485–1493. doi: 10.1021/acs.jpclett.2c03110. PubMed DOI PMC

Rozenberg A., Kaczmarczyk I., Matzov D., Vierock J., Nagata T., Sugiura M., Katayama K., Kawasaki Y., Konno M., Nagasaka Y., Aoyama M.. et al. Rhodopsin-bestrophin fusion proteins from unicellular algae form gigantic pentameric ion channels. Nat. Struct. Mol. Biol. 2022;29(6):592–603. doi: 10.1038/s41594-022-00783-x. PubMed DOI

Broser M., Spreen A., Konold P. E., Peter E., Adam S., Borin V., Schapiro I., Seifert R., Kennis J. T. M., Sierra Y. A. B., Hegemann P.. et al. NeoR, a near-infrared absorbing rhodopsin. Nat. Commun. 2020;11(1):5682. doi: 10.1038/s41467-020-19375-8. PubMed DOI PMC

Broser M., Busse W., Spreen A., Hegemann P.. Diversity of rhodopsin cyclases in zoospore-forming fungi. Proc. Natl. Acad. Sci. U.S.A. 2023;120:e2310600120. doi: 10.1073/pnas.2310600120. PubMed DOI PMC

Broser M., Andruniów T., Kraskov A., Palombo R., Katz S., Kloz M., Dostál J., Bernardo C., Kennis J. T. M., Hegemann P.. et al. Experimental Assessment of the Electronic and Geometrical Structure of a Near-Infrared Absorbing and Highly Fluorescent Microbial Rhodopsin. J. Phys. Chem. Lett. 2023;14:9291–9295. doi: 10.1021/acs.jpclett.3c02167. PubMed DOI

Sugiura M., Ishikawa K., Katayama K., Sumii Y., Abe-Yoshizumi R., Tsunoda S. P., Furutani Y., Shibata N., Brown L. S., Kandori H.. Unusual Photoisomerization Pathway in a Near-Infrared Light Absorbing Enzymerhodopsin. J. Phys. Chem. Lett. 2022;13(40):9539–9543. doi: 10.1021/acs.jpclett.2c02334. PubMed DOI

Palombo R., Barneschi L., Pedraza-González L., Padula D., Schapiro I., Olivucci M.. Retinal chromophore charge delocalization and confinement explain the extreme photophysics of Neorhodopsin. Nat. Commun. 2022;13(1):6652. doi: 10.1038/s41467-022-33953-y. PubMed DOI PMC

van Stokkum I. H. M., Dostal J., Do T. N., Fu L. F., Madej G., Ziegler C., Hegemann P., Kloz M., Broser M., Kennis J. T. M.. Retinal to Retinal Energy Transfer in a Bistable Microbial Rhodopsin Dimer. J. Am. Chem. Soc. 2025;147(17):14468–14480. doi: 10.1021/jacs.5c01276. PubMed DOI PMC

Kukura P., McCamant D. W., Mathies R. A.. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 2007;58:461–488. doi: 10.1146/annurev.physchem.58.032806.104456. PubMed DOI

Urui T., Mizuno M., Otomo A., Kandori H., Mizutani Y.. Resonance Raman Determination of Chromophore Structures of Heliorhodopsin Photointermediates. J. Phys. Chem. B. 2021;125(26):7155–7162. doi: 10.1021/acs.jpcb.1c04010. PubMed DOI

Shibata K., Oda K., Nishizawa T., Hazama Y., Ono R., Takaramoto S., Bagherzadeh R., Yaw H., Nureki O., Inoue K., Akiyama H.. et al. Twisting and Protonation of Retinal Chromophore Regulate Channel Gating of Channelrhodopsin C1C2. J. Am. Chem. Soc. 2023;145(19):10779–10789. doi: 10.1021/jacs.3c01879. PubMed DOI

Kloz M., Weissenborn J., Polivka T., Frank H. A., Kennis J. T. M.. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S-star state. Phys. Chem. Chem. Phys. 2016;18(21):14619–14628. doi: 10.1039/C6CP01464J. PubMed DOI

Hontani Y., Kloz M., Polivka T., Shukla M. K., Sobotka R., Kennis J. T. M.. Molecular Origin of Photoprotection in Cyanobacteria Probed by Watermarked Femtosecond Stimulated Raman Spectroscopy. J. Phys. Chem. Lett. 2018;9(7):1788–1792. doi: 10.1021/acs.jpclett.8b00663. PubMed DOI PMC

Vivancos J. M. A., Van Stokkum I. H. M., Saccon F., Hontani Y., Kloz M., Ruban A., van Grondelle R., Kennis J. T. M.. Unraveling the Excited-State Dynamics and Light-Harvesting Functions of Xanthophylls in Light-Harvesting Complex II Using Femtosecond Stimulated Raman Spectroscopy. J. Am. Chem. Soc. 2020;142(41):17346–17355. doi: 10.1021/jacs.0c04619. PubMed DOI PMC

Hontani Y., Mehlhorn J., Domratcheva T., Beck S., Kloz M., Hegemann P., Mathes T., Kennis J. T. M.. Spectroscopic and Computational Observation of Glutamine Tautomerization in the Blue Light Sensing Using Flavin Domain Photoreaction. J. Am. Chem. Soc. 2023;145(2):1040–1052. doi: 10.1021/jacs.2c10621. PubMed DOI PMC

Hontani Y., Broser M., Luck M., Weissenborn J., Kloz M., Hegemann P., Kennis J. T. M.. Dual Photoisomerization on Distinct Potential Energy Surfaces in a UV-Absorbing Rhodopsin. J. Am. Chem. Soc. 2020;142(26):11464–11473. doi: 10.1021/jacs.0c03229. PubMed DOI PMC

Liu Y. L., Chaudhari A. S., Chatterjee A., Andrikopoulos P. C., Picchiotti A., Rebarz M., Kloz M., Lorenz-Fonfria V. A., Schneider B., Fuertes G.. Sub-Millisecond Photoinduced Dynamics of Free and EL222-Bound FMN by Stimulated Raman and Visible Absorption Spectroscopies. Biomolecules. 2023;13(1):161. doi: 10.3390/biom13010161. PubMed DOI PMC

Konold P. E., van Stokkum I. H. M., Muzzopappa F., Wilson A., Groot M. L., Kirilovsky D., Kennis J. T. M. P. M.. Timing of Protein Secondary Structure Dynamics and Carotenoid Translocation in the Orange Carotenoid Protein. J. Am. Chem. Soc. 2019;141(1):520–530. doi: 10.1021/jacs.8b11373. PubMed DOI PMC

Mathes T., Ravensbergen J., Kloz M., Gleichmann T., Gallagher K. D., Woitowich N. C., St Peter R., Kovaleva S. E., Stojkovic E. A., Kennis J. T. M.. Femto- to Microsecond Photodynamics of an Unusual Bacteriophytochrome. J. Phys. Chem. Lett. 2015;6(2):239–243. doi: 10.1021/jz502408n. PubMed DOI

Brust R., Lukacs A., Haigney A., Addison K., Gil A., Towrie M., Clark I. P., Greetham G. M., Tonge P. J., Meech S. R.. Proteins in Action: Femtosecond to Millisecond Structural Dynamics of a Photoactive Flavoprotein. J. Am. Chem. Soc. 2013;135(43):16168–16174. doi: 10.1021/ja407265p. PubMed DOI PMC

Konold P. E., Mathes T., Weissenhorn J., Groot M. L., Hegemann P., Kennis J. T. M.. Unfolding of the C-Terminal Jα Helix in the LOV2 Photoreceptor Domain Observed by Time-Resolved Vibrational Spectroscopy. J. Phys. Chem. Lett. 2016;7(17):3472–3476. doi: 10.1021/acs.jpclett.6b01484. PubMed DOI

Mathes T., Heilmann M., Pandit A., Zhu J. Y., Ravensbergen J., Kloz M., Fu Y. A., Smith B. O., Christie J. M., Jenkins G. I.. et al. Proton-Coupled Electron Transfer Constitutes the Photoactivation Mechanism of the Plant Photoreceptor UVR8. J. Am. Chem. Soc. 2015;137(25):8113–8120. doi: 10.1021/jacs.5b01177. PubMed DOI

Ganapathy S., Opdam L., Hontani Y., Frehan S., Chen Q., Hellingwerf K. J., de Groot H. J. M., Kennis J. T. M., de Grip W. J.. Membrane matters: The impact of a nanodisc-bilayer or a detergent microenvironment on the properties of two eubacterial rhodopsins. Biochim. Et Biophys. acta-Biomembr. 2020;1862:183113. doi: 10.1016/j.bbamem.2019.183113. PubMed DOI

Hontani Y., Ganapathy S., Frehan S., Kloz M., de Grip W. J., Kennis J. T. M.. Strong pH-Dependent Near-Infrared Fluorescence in a Microbial Rhodopsin Reconstituted with a Red-Shifting Retinal Analogue. J. Phys. Chem. Lett. 2018;9(22):6469–6474. doi: 10.1021/acs.jpclett.8b02780. PubMed DOI PMC

Hontani Y., Ganapathy S., Frehan S., Kloz M., de Grip W. J., Kennis J. T. M.. Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin. J. Phys. Chem. B. 2019;123(19):4242–4250. doi: 10.1021/acs.jpcb.9b01136. PubMed DOI PMC

Berera R., van Grondelle R., Kennis J. T. M.. Ultrafast transient absorption spectroscopy: Principles and application to photosynthetic systems. Photosynth. Res. 2009;101(2–3):105–118. doi: 10.1007/s11120-009-9454-y. PubMed DOI PMC

Dokukina I., Weingart O.. Spectral properties and isomerisation path of retinal in C1C2 channelrhodopsin. Phys. Chem. Chem. Phys. 2015;17(38):25142–25150. doi: 10.1039/C5CP02650D. PubMed DOI

Smith S. O., Pardoen J. A., Mulder P. P. J., Curry B., Lugtenburg J., Mathies R.. Chromophore structure in bacteriorhodopsins-o640 photointermediate. Biochemistry. 1983;22(26):6141–6148. doi: 10.1021/bi00295a016. DOI

Smith S. O., Pardoen J. A., Lugtenburg J., Mathies R. A.. Vibrational analysis of the 13-cis-retinal chromophore in dark-adapted bacteriorhodopsin. J. Phys. Chem. 1987;91(4):804–819. doi: 10.1021/j100288a011. DOI

Smith S. O., Mathies R. A.. Resonance raman-spectra of the acidified and deionized forms of bacteriorhodopsin. Biophys. J. 1985;47(2):251–254. doi: 10.1016/S0006-3495(85)83899-6. PubMed DOI PMC

Smith S. O., Braiman M. S., Myers A. B., Pardoen J. A., Courtin J. M. L., Winkel C., Lugtenburg J., Mathies R. A.. Vibrational analysis of the all-trans-retinal chromophore in light-adapted bacteriorhodopsin. J. Am. Chem. Soc. 1987;109(10):3108–3125. doi: 10.1021/ja00244a038. DOI

Nakamizo Y., Fujisawa T., Kikukawa T., Okamura A., Baba H., Unno M.. Low-temperature Raman spectroscopy of sodium-pump rhodopsin from Indibacter alkaliphilus: insight of Na+ binding for active Na+ transport. Phys. Chem. Chem. Phys. 2021;23(3):2072–2079. doi: 10.1039/D0CP05652A. PubMed DOI

Kajimoto K., Kikukawa T., Nakashima H., Yamaryo H., Saito Y., Fujisawa T., Demura M., Unno M.. Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus. J. Phys. Chem. B. 2017;121(17):4431–4437. doi: 10.1021/acs.jpcb.7b02421. PubMed DOI

Fujisawa T., Kiyota H., Kikukawa T., Unno M.. Low-Temperature Raman Spectroscopy of Halorhodopsin from Natronomonas pharaonis: Structural Discrimination of Blue-Shifted and Red-Shifted Photoproducts. Biochemistry. 2019;58(40):4159–4167. doi: 10.1021/acs.biochem.9b00643. PubMed DOI

Fujisawa T., Abe M., Tamogami J., Kikukawa T., Kamo N., Unno M.. Low-temperature Raman spectroscopy reveals small chromophore distortion in primary photointermediate of proteorhodopsin. FEBS Lett. 2018;592(18):3054–3061. doi: 10.1002/1873-3468.13219. PubMed DOI

Luck M., Mathes T., Bruun S., Fudim R., Hagedorn R., Tra M. T. N., Kateriya S., Kennis J. T. M., Hildebrandt P., Hegemann P.. A Photochromic Histidine Kinase Rhodopsin (HKR1) That Is Bimodally Switched by Ultraviolet and Blue Light. J. Biol. Chem. 2012;287(47):40083–40090. doi: 10.1074/jbc.M112.401604. PubMed DOI PMC

Bruun S., Stoeppler D., Keidel A., Kuhlmann U., Luck M., Diehl A., Geiger M. A., Woodmansee D., Trauner D., Hegemann P.. et al. Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the all-trans and 13-cis Retinal Isomers. Biochemistry. 2015;54(35):5389–5400. doi: 10.1021/acs.biochem.5b00597. PubMed DOI

Yi A., Li H., Mamaeva N., De Cordoba R. E. F., Lugtenburg J., DeGrip W. J., Spudich J. L., Rothschild K. J.. Structural Changes in an Anion Channelrhodopsin: Formation of the K and L Intermediates at 80 K. Biochemistry. 2017;56(16):2197–2208. doi: 10.1021/acs.biochem.7b00002. PubMed DOI PMC

Ogren J. I., Yi A., Mamaev S., Li H., Lugtenburg J., DeGrip W. J., Spudich J. L., Rothschild K. J.. Comparison of the Structural Changes Occurring during the Primary Phototransition of Two Different Channelrhodopsins from Chlamydomonas Algae. Biochemistry. 2015;54(2):377–388. doi: 10.1021/bi501243y. PubMed DOI PMC

McCamant D. W., Kukura P., Mathies R. A.. Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin. J. Phys. Chem. B. 2005;109(20):10449–10457. doi: 10.1021/jp050095x. PubMed DOI PMC

Eyring G., Curry B., Broek A., Lugtenburg J., Mathies R.. Assignment and interpretation of hydrogen out-of-plane vibrations in the resonance raman-spectra of rhodopsin and bathorhodopsin. Biochemistry. 1982;21(2):384–393. doi: 10.1021/bi00531a028. PubMed DOI

Palings I., Vandenberg E. M. M., Lugtenburg J., Mathies R. A.. Complete assignment of the hydrogen out-of-plane wagging vibrations of bathorhodopsin - chromophore structure and energy-storage in the primary photoproduct of vision. Biochemistry. 1989;28(4):1498–1507. doi: 10.1021/bi00430a012. PubMed DOI

Yan E. C. Y., Ganim Z., Kazmi M. A., Chang B. S. W., Sakmar T. P., Mathies R. A.. Resonance Raman analysis of the mechanism of energy storage and chromophore distortion in the primary visual photoproduct. Biochemistry. 2004;43(34):10867–10876. doi: 10.1021/bi0400148. PubMed DOI PMC

Altoe P., Cembran A., Olivucci M., Garavelli M.. Aborted double bicycle-pedal isomerization with hydrogen bond breaking is the primary event of bacteriorhodopsin proton pumping. Proc. Natl. Acad. Sci. U. S. A. 2010;107(47):20172–20177. doi: 10.1073/pnas.1007000107. PubMed DOI PMC

Frutos L. M., Andruniów T., Santoro F., Ferré N., Olivucci M.. Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proc. Natl. Acad. Sci. U. S. A. 2007;104(19):7764–7769. doi: 10.1073/pnas.0701732104. PubMed DOI PMC

Migani A., Sinicropi A., Ferré N., Cembran A., Garavelli M., Olivucci M.. Structure of the intersection space associated with Z/E photoisomerization of retinal in rhodopsin proteins. Faraday Discuss. 2004;127:179–191. doi: 10.1039/B315217K. PubMed DOI

Stehfest K., Hegemann P.. Evolution of the Channelrhodopsin Photocycle Model. ChemPhyschem. 2010;11(6):1120–1126. doi: 10.1002/cphc.200900980. PubMed DOI

Palombo R., Barneschi L., Pedraza-González L., Yang X. C., Olivucci M.. Picosecond quantum-classical dynamics reveals that the coexistence of light-induced microbial and animal chromophore rotary motion modulates the isomerization quantum yield of heliorhodopsin. Phys. Chem. Chem. Phys. 2024;26(13):10343–10356. doi: 10.1039/D4CP00193A. PubMed DOI

Peteanu L. A., Schoenlein R. W., Wang Q., Mathies R. A., Shank C. V.. The 1st step in vision occurs in femtoseconds - complete blue and red spectral studies. Proc. Natl. Acad. Sci. U. S. A. 1993;90(24):11762–11766. doi: 10.1073/pnas.90.24.11762. PubMed DOI PMC

Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamp R. E., Yamamoto M.. et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000;289(5480):739–745. doi: 10.1126/science.289.5480.739. PubMed DOI

Okada T., Sugihara M., Bondar A. N., Elstner M., Entel P., Buss V.. The retinal conformation and its environment in rhodopsin in light of a new 2.2 angstrom crystal structure. J. Mol. Biol. 2004;342(2):571–583. doi: 10.1016/j.jmb.2004.07.044. PubMed DOI

Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K.. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 1999;291(4):899–911. doi: 10.1006/jmbi.1999.3027. PubMed DOI

Weingart O., Altoè P., Stenta M., Bottoni A., Orlandi G., Garavelli M.. Product formation in rhodopsin by fast hydrogen motions. Phys. Chem. Chem. Phys. 2011;13(9):3645–3648. doi: 10.1039/c0cp02496a. PubMed DOI

Cembran A., Bernardi F., Olivucci M., Garavelli M.. Counterion controlled photoisomerization of retinal chromophore models: a computational investigation. J. Am. Chem. Soc. 2004;126(49):16018–16037. doi: 10.1021/ja048782+. PubMed DOI

Eyring G., Curry B., Mathies R., Broek A., Lugtenburg J.. Assignment of the anomalous resonance raman vibrations of bathorhodopsin. J. Am. Chem. Soc. 1980;102(16):5390–5392. doi: 10.1021/ja00536a046. DOI

Chosrowjan H., Mataga N., Shibata Y., Tachibanaki S., Kandori H., Shichida Y., Okada T., Kouyama T.. Rhodopsin emission in real time: A new aspect of the primary event in vision. J. Am. Chem. Soc. 1998;120(37):9706–9707. doi: 10.1021/ja981659w. DOI

Polli D., Weingart O., Brida D., Poli E., Maiuri M., Spillane K. M., Bottoni A., Kukura P., Mathies R. A., Cerullo G.. et al. Wavepacket Splitting and Two-Pathway Deactivation in the Photoexcited Visual Pigment Isorhodopsin. Angewandte Chem.-Int. Ed. 2014;53(9):2504–2507. doi: 10.1002/anie.201309867. PubMed DOI

Schapiro I., Weingart O., Buss V.. Bicycle-Pedal Isomerization in a Rhodopsin Chromophore Model. J. Am. Chem. Soc. 2009;131(1):16–17. doi: 10.1021/ja805586z. PubMed DOI

Seltzer S.. Mndo barrier heights for catalyzed bicycle-pedal, hula-twist, and ordinary cis-trans isomerizations of protonated retinal schiff-base. J. Am. Chem. Soc. 1987;109(6):1627–1631. doi: 10.1021/ja00240a004. DOI

Dormans G. J. M., Groenenboom G. C., Vandorst W. C. A., Buck H. M.. A Quantum chemical study on the mechanism of cis trans isomerization in retinal-like protonated schiff-bases. J. Am. Chem. Soc. 1988;110(5):1406–1415. doi: 10.1021/ja00213a012. DOI

Feng Y., Vinogradov I., Ge N. H.. General noise suppression scheme with reference detection in heterodyne nonlinear spectroscopy. Opt. Express. 2017;25(21):26262–26279. doi: 10.1364/OE.25.026262. PubMed DOI

van Stokkum I. H. M., Kloz M., Polli D., Viola D., Weissenborn J., Peerbooms E., Cerullo G., Kennis J. T. M.. Vibronic dynamics resolved by global and target analysis of ultrafast transient absorption spectra. J. Chem. Phys. 2021;155(11):114113. doi: 10.1063/5.0060672. PubMed DOI

van Stokkum I. H. M., Snellenburg J. J., Chrupková P., Dostal J., Weigand S., Weissenborn J., Kennis J. T. M., Kloz M.. Target Analysis Resolves the Ground and Excited State Properties from Femtosecond Stimulated Raman Spectra. J. Phys. Chem. Lett. 2024;15(37):9397–9404. doi: 10.1021/acs.jpclett.4c01555. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...