Incidence of Hippocampal Metastases: Laterality and Implications for Unilateral Hippocampal Avoiding Whole Brain Radiotherapy
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu klinické zkoušky, časopisecké články
PubMed
30643795
PubMed Central
PMC6311293
DOI
10.1155/2018/2459608
Knihovny.cz E-zdroje
- MeSH
- hipokampus diagnostické zobrazování MeSH
- léčba šetřící orgány * MeSH
- lidé středního věku MeSH
- lidé MeSH
- metastázy nádorů MeSH
- nádory mozku diagnostické zobrazování patologie radioterapie MeSH
- retrospektivní studie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
INTRODUCTION: Hippocampi sparing whole brain radiotherapy (WBRT) is an evolving approach in the treatment of patients with multiple brain metastases, pursuing mitigation of verbal memory decline as a consequence of hippocampal radiation injury. Accumulating data are showing different postradiotherapy changes in the left and right hippocampus with a theoretical proposal of only unilateral (dominant, left) hippocampal sparing during WBRT. METHOD: The aim of this retrospective study is to describe spatial distribution of brain metastases on MRI in a cohort of 260 patients (2595 metastases) and to evaluate distribution separately in the left and right hippocampus and in respective hippocampal avoiding zones (HAZ, region with subtherapeutic radiation dose), including evaluation of location of metastatic mass centre. RESULTS: The median number of brain metastases was three, with lung cancer being the most common type of primary tumour; 36% had single metastasis. Almost 8% of patients had metastasis within hippocampus (1.1% of all metastases) and 18.1% of patients within HAZ (3.3% of all metastases). No statistically significant difference was observed in the laterality of hippocampal involvement, also when the location of centre of metastases was analyzed. There were more patients presenting the centre of metastasis within left (15) versus right (6) HAZ approaching the borderline of statistical significance. CONCLUSION: No significant difference in the laterality of BM seeding within hippocampal structures was observed. The hypothesized unilateral sparing WBRT would have theoretical advantage in about 50% reduction in the risk of subsequent recurrence within spared regions.
Central European Institute of Technology Masaryk University Kamenice 5 625 00 Brno Czech Republic
Department of Neurosurgery St Anne's University Hospital Brno Pekarska 53 656 91 Brno Czech Republic
Department of Radiology Masaryk Memorial Cancer Institute Zluty kopec 7 656 53 Brno Czech Republic
Faculty of Medicine Masaryk University Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
Meyers C. A., Rock E. P., Fine H. A. Refining endpoints in brain tumor clinical trials. Journal of Neuro-Oncology. 2012;108(2):227–230. doi: 10.1007/s11060-012-0813-8. PubMed DOI
Gondi V., Mehta M. P. Control versus cognition: the changing paradigm of adjuvant therapy for resected brain metastasis. Neuro-Oncology. 2018;20(1):2–3. doi: 10.1093/neuonc/nox180. PubMed DOI PMC
Brown P. D., Jaeckle K., Ballman K. V., et al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases a randomized clinical trial. Journal of the American Medical Association. 2016;316(4):401–409. doi: 10.1001/jama.2016.9839. PubMed DOI PMC
Soffietti R., Abacioglu U., Baumert B., et al. Diagnosis and treatment of brain metastases from solid tumors: Guidelines from the European Association of neuro-oncology (EANO) Neuro-Oncology. 2017;19(2):162–174. doi: 10.1093/neuonc/now241. PubMed DOI PMC
Mahajan A., Ahmed S., McAleer M. F., et al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. The Lancet Oncology. 2017;18(8):1040–1048. doi: 10.1016/S1470-2045(17)30414-X. PubMed DOI PMC
Brown P. D., Ballman K. V., Cerhan J. H., et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial. The Lancet Oncology. 2017;18(8):1049–1060. doi: 10.1016/S1470-2045(17)30441-2. PubMed DOI PMC
Brown P. D., Pugh S., Laack N. N., et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro-Oncology. 2013;15(10):1429–1437. doi: 10.1093/neuonc/not114. PubMed DOI PMC
Mehta M. P., Aoyama H., Gondi V. The Changing Role of Whole-Brain Radiotherapy. JAMA Oncology. 2017;3(8):p. 1021. doi: 10.1001/jamaoncol.2016.5414. PubMed DOI
Soltys S. G., Kirkpatrick J. P., Laack N. N., Kavanagh B. D., Breneman J. C., Shih H. A. Is Less, More? The Evolving Role of Radiation Therapy for Brain Metastases. International Journal of Radiation Oncology, Biology, Physics. 2015;92(5):963–966. doi: 10.1016/j.ijrobp.2015.03.003. PubMed DOI
Dye N. B., Gondi V., Mehta M. P. Strategies for preservation of memory function in patients with brain metastases. Chinese Clinical Oncology. 2015;4(2):p. 24. doi: 10.3978/j.issn.2304-3865.2015.05.05. PubMed DOI
Kazda T., Jancalek R., Pospisil P., et al. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Journal of Radiation Oncology. 2014;9(1):p. 139. doi: 10.1186/1748-717X-9-139. PubMed DOI PMC
Bálentová S., Hajtmanová E., Filová B., Borbélyová V., Ján L. Effect of Fractionated Irradiation on the Hippocampus in an Experimental Model. Klinicka Onkologie. 2015;28(3):191–199. doi: 10.14735/amko2015191. PubMed DOI
Monje M. L., Mizumatsu S., Fike J. R., Palmer T. D. Irradiation induces neural precursor-cell dysfunction. Nature Medicine. 2002;8(9):955–962. doi: 10.1038/nm749. PubMed DOI
Gondi V., Pugh S. L., Tome W. A., et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. Journal of Clinical Oncology. 2014;32(34):3810–3816. doi: 10.1200/jco.2014.57.2909. PubMed DOI PMC
Lee T. M. C., Yip J. T. H., Jones-Gotman M. Memory deficits after resection from left or right anterior temporal lobe in humans: a meta-analytic review. Epilepsia. 2002;43(3):283–291. doi: 10.1046/j.1528-1157.2002.09901.x. PubMed DOI
Jalali R., Mallick I., Dutta D., et al. Factors influencing neurocognitive outcomes in young patients with benign and low-grade brain tumors treated with stereotactic conformal radiotherapy. International Journal of Radiation Oncology, Biology, Physics. 2010;77(4):974–979. doi: 10.1016/j.ijrobp.2009.06.025. PubMed DOI
Farjam R., Pramanik P., Aryal M. P., et al. A radiation-induced hippocampal vascular injury surrogate marker predicts late neurocognitive dysfunction. International Journal of Radiation Oncology, Biology, Physics. 2015;93(4):908–915. doi: 10.1016/j.ijrobp.2015.08.014. PubMed DOI PMC
Pospisil P., Kazda T., Bulik M., et al. Hippocampal proton MR spectroscopy as a novel approach in the assessment of radiation injury and the correlation to neurocognitive function impairment: initial experiences. Journal of Radiation Oncology. 2015;10(1) doi: 10.1186/s13014-015-0518-1. PubMed DOI PMC
Pospisil P., Kazda T., Hynkova L., et al. Post-WBRT cognitive impairment and hippocampal neuronal depletion measured by in vivo metabolic MR spectroscopy: Results of prospective investigational study. Radiotherapy & Oncology. 2017;122(3):373–379. doi: 10.1016/j.radonc.2016.12.013. PubMed DOI
Ma T. M., Grimm J., McIntyre R., et al. A prospective evaluation of hippocampal radiation dose volume effects and memory deficits following cranial irradiation. Radiotherapy & Oncology. 2017;125(2):234–240. doi: 10.1016/j.radonc.2017.09.035. PubMed DOI PMC
Kazda T., Vrzal M., Prochazka T., et al. Left hippocampus sparing whole brain radiotherapy (WBRT): A planning study. Biomedical Papers. 2017;161(4):397–402. doi: 10.5507/bp.2017.031. PubMed DOI
Hippocampal contouring: a contouring Atlas for RTOG 0933, http://www.rtog.org/LinkClick.aspx?fileticket=59vaU8vfgQc%3d&tabid=338.
Gondi V., Tolakanahalli R., Mehta M. P., et al. Hippocampal-sparing whole-brain radiotherapy: a how-to technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. International Journal of Radiation Oncology, Biology, Physics. 2010;78(4):1244–1252. doi: 10.1016/j.ijrobp.2010.01.039. PubMed DOI PMC
Ghia A., Tomé W. A., Thomas S., et al. Distribution of brain metastases in relation to the hippocampus: implications for neurocognitive functional preservation. International Journal of Radiation Oncology, Biology, Physics. 2007;68(4):971–977. doi: 10.1016/j.ijrobp.2007.02.016. PubMed DOI
Marsh J., Gielda B., Herskovic A., Wendt J., Turian J. Sparing of the hippocampus and limbic circuit during whole brain radiation therapy: A dosimetric study using helical tomotherapy. Journal of Medical Imaging and Radiation Oncology. 2010;54(4):375–382. doi: 10.1111/j.1754-9485.2010.02184.x. PubMed DOI
Gondi V., Tome W. A., Marsh J., et al. Estimated risk of perihippocampal disease progression after hippocampal avoidance during whole-brain radiotherapy: safety profile for RTOG 0933. Radiotherapy & Oncology. 2010;95(3):327–331. doi: 10.1016/j.radonc.2010.02.030. PubMed DOI PMC
Wan J., Zhang S., Wang L., Zhao K. Implications for preserving neural stem cells in whole brain radiotherapy and prophylactic cranial irradiation: a review of 2270 metastases in 488 patients. Journal of Radiation Research. 2013;54(2):285–291. doi: 10.1093/jrr/rrs085. PubMed DOI PMC
Harth S., Abo-Madyan Y., Zheng L., et al. Estimation of intracranial failure risk following hippocampal-sparing whole brain radiotherapy. Radiotherapy & Oncology. 2013;109(1):152–158. doi: 10.1016/j.radonc.2013.09.009. PubMed DOI
Hong A. M., Suo C., Valenzuela M., et al. Low incidence of melanoma brain metastasis in the hippocampus. Radiotherapy & Oncology. 2014;111(1):59–62. doi: 10.1016/j.radonc.2014.01.012. PubMed DOI
Sun B., Huang Z., Wu S., et al. Incidence and relapse risk of intracranial metastases within the perihippocampal region in 314 patients with breast cancer. Radiotherapy & Oncology. 2016;118(1):181–186. doi: 10.1016/j.radonc.2015.11.010. PubMed DOI
Lakomy R., Hynkova L., Pospisil P., et al. Patterns of failure after brain metastases radiotherapy: reflections on the importance for treatment and clinical trials reporting. Neoplasma. 2017;64(03):329–337. doi: 10.4149/neo_2017_302. PubMed DOI
Berghoff A. S., Schur S., Füreder L. M., et al. Descriptive statistical analysis of a real life cohort of 2419 patients with brain metastases of solid cancers. ESMO Open. 2016;1(2):p. e000024. doi: 10.1136/esmoopen-2015-000024. PubMed DOI PMC
Kazda T., Pospisil P., Vrzal M., et al. Volumetric modulated arc therapy for hippocampal-sparing radiotherapy in transformed low-grade glioma: A treatment planning case report. Cancer Radiothérapie. 2015;19(3):187–191. doi: 10.1016/j.canrad.2014.11.013. PubMed DOI
Vrána D., Študentová H., Matzenauer M., et al. Treatment of brain metastases of renal cell cancer with combined hypofractionated stereotactic radiotherapy and whole brain radiotherapy with hippocampal sparing. Oncology Letters. 2016;11(6):3777–3781. doi: 10.3892/ol.2016.4440. PubMed DOI PMC