Searching for potential drugs against SARS-CoV-2 through virtual screening on several molecular targets
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33416020
PubMed Central
PMC7876915
DOI
10.1080/07391102.2020.1869096
Knihovny.cz E-zdroje
- Klíčová slova
- SARS-CoV-2, drug repurposing, multi-target approach, virtual screening,
- MeSH
- cysteinové endopeptidasy MeSH
- farmakoterapie COVID-19 * MeSH
- inhibitory proteas MeSH
- koronavirové proteasy 3C MeSH
- léčivé přípravky MeSH
- lidé MeSH
- SARS-CoV-2 * MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cysteinové endopeptidasy MeSH
- inhibitory proteas MeSH
- koronavirové proteasy 3C MeSH
- léčivé přípravky MeSH
The acute respiratory syndrome caused by the SARS-CoV-2, known as COVID-19, has been ruthlessly tormenting the world population for more than six months. However, so far no effective drug or vaccine against this plague have emerged yet, despite the huge effort in course by researchers and pharmaceutical companies worldwide. Willing to contribute with this fight to defeat COVID-19, we performed a virtual screening study on a library containing Food and Drug Administration (FDA) approved drugs, in a search for molecules capable of hitting three main molecular targets of SARS-CoV-2 currently available in the Protein Data Bank (PDB). Our results were refined with further molecular dynamics (MD) simulations and MM-PBSA calculations and pointed to 7 multi-target hits which we propose here for experimental evaluation and repurposing as potential drugs against COVID-19. Additional rounds of docking, MD simulations and MM-PBSA calculations with remdesivir suggested that this compound can also work as a multi-target drug against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Department of Chemical Engineering Instituto Militar de Engenharia Rio de Janeiro RJ Brazil
Department of Chemistry Federal Institute of Espírito Santo Unit Vila Velha Vila Velha ES Brazil
Department of Chemistry Pontifical Catholic University of Rio de Janeiro Rio de Janeiro RJ Brazil
INRS Centre Armand Frappier Santé Biotechnologie 531 Boulevard des Prairies Laval QC Canada
Institute of Chemical Biological Radiological and Nuclear Defense Rio de Janeiro RJ Brazil
PPGQUI Federal University of Espirito Santo Vitoria ES Brazil
Zobrazit více v PubMed
Báez-Santos, Y. M., St. John, S. E., & Mesecar, A. D. (2015). The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Research, 115, 21–38. 10.1016/j.antiviral.2014.12.015 PubMed DOI PMC
Bayly, C. C. I., Cieplak, P., Cornell, W. D., & Kollman, P. a. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97(40), 10269–10280. 10.1021/j100142a004 DOI
Bedford, J., Enria, D., Giesecke, J., Heymann, D. L., Ihekweazu, C., Kobinger, G., Lane, H. C., Memish, Z., Oh, M-d., Sall, A. A., Schuchat, A., Ungchusak, K., & Wieler, L. H. (2020). COVID-19: towards controlling of a pandemic. The Lancet, 395(10229), 1015–1018. 10.1016/S0140-6736(20)30673-5 PubMed DOI PMC
Berendsen, H. J. C., Van der Spoel, D., & Van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. no10.1016/0010-4655(95)00042-E DOI
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E. (2000b). The protein data bank. Nucleic acids research. Vol. 28. http://www.rcsb.org/pdb/status.html. PubMed PMC
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000a). The protein data bank. Nucleic Acids Research, 28(1), 235–242. 10.1093/nar/28.1.235 PubMed DOI PMC
Bosko, J. T., Todd, B. D., & Sadus, R. J. (2005). Molecular simulation of dendrimers and their mixtures under shear: Comparison of isothermal-isobaric (NpT) and isothermal-isochoric (NVT) ensemble systems. The Journal of Chemical Physics, 123(3), 034905. 10.1063/1.1946749 PubMed DOI
Botelho, F. D., dos Santos, M. C., da S. Gonçalves, A., Kuca, K., Valis, M., LaPlante, S. R., França, T. C. C., & de Almeida, J. S. F. D. (2020, November 26). Ligand-based virtual screening, molecular docking, molecular dynamics, and MM-PBSA calculations towards the identification of potential novel ricin inhibitors. Toxins, 12(12), 746. https://www.mdpi.com/2072-6651/12/12/746. 10.3390/toxins12120746 PubMed DOI PMC
Cao, L., Goreshnik, I., Coventry, B., Case, J. B., Miller, L., Kozodoy, L., Chen, R. E., Carter, L., Walls, A. C., Park, Y.-J., Strauch, E.-M., Stewart, L., Diamond, M. S., Veesler, D., & Baker, D. (2020). De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 370(6515), 426–431. 10.1126/science.abd9909 PubMed DOI PMC
Cornell, W. D., Cieplak, P., Bayly, C. I., Kollman, P. a., & Kollmann, P. A. (1993). Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. Journal of the American Chemical Society, 115(21), 9620–9631. no10.1021/ja00074a030 DOI
Cucinotta, D., & Vanelli, M. (2020). WHO declares COVID-19 a pandemic. Acta Bio-Medica : Atenei Parmensis, 91(1), 157–160. 10.23750/abm.v91i1.9397 PubMed DOI PMC
da Silva, J. A. V., Nepovimova, E., Ramalho, T. C., Kuca, K., & França, T. C. C. (2019, January). Molecular modeling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime, 4-PA, 2-PAM, and obidoxime with VX-inhibited human acetylcholinesterase: A near attack conformation approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 1018–1029. https://www.tandfonline.com/doi/full/10.1080/14756366.2019.1609953. 10.1080/14756366.2019.1609953 PubMed DOI PMC
de Almeida, J. S. F. D., Cavalcante, S. F. A., Dolezal, R., Kuca, K., Musilek, K., Jun, D., & França, T. C. C. (2019, May 24). Molecular modeling studies on the interactions of aflatoxin B1 and its metabolites with the peripheral anionic site of human acetylcholinesterase. Journal of Biomolecular Structure & Dynamics, 37(8), 2041–2048. http://www.ncbi.nlm.nih.gov/pubmed/29749305. 10.1080/07391102.2018.1475259 PubMed DOI
Douguet, D. (2010). E-LEA3D: A computational-aided drug design web server. Nucleic Acids Research, 38(Web Server), W615–621. 10.1093/nar/gkq322 PubMed DOI PMC
Douguet, D. (2018). Data sets representative of the structures and experimental properties of FDA-approved drugs. ACS Medicinal Chemistry Letters, 9(3), 204–209. 10.1021/acsmedchemlett.7b00462 PubMed DOI PMC
Evans, D. J., & Holian, B. L. (1985). The nose-hoover thermostat. The Journal of Chemical Physics, 83(8), 4069–4074. 10.1063/1.449071 DOI
Fierabracci, A., Arena, A., & Rossi, P. (2020). COVID-19: A review on diagnosis, treatment, and prophylaxis. International Journal of Molecular Sciences, 21(14), 5145. 10.3390/ijms21145145 PubMed DOI PMC
Gao, X., Qin, B., Chen, P., Zhu, K., Hou, P., Wojdyla, J. A., Wang, M., & Cui, S. (2020). Crystal Structure of SARS-CoV-2 papain-like protease. Acta Pharmaceutica Sinica B, 10.1016/j.apsb.2020.08.014 PubMed DOI PMC
Gates, B. (2020). Responding to Covid-19 - A once-in-a-century pandemic? The New England Journal of Medicine, 382(18), 1677–1679. 10.1056/NEJMp2003762 PubMed DOI
Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., Castagna, A., Feldt, T., Green, G., Green, M. L., Lescure, F.-X., Nicastri, E., Oda, R., Yo, K., Quiros-Roldan, E., Studemeister, A., Redinski, J., Ahmed, S., Bernett, J., Chelliah, D., … Flanigan, T. (2020). Compassionate use of remdesivir for patients with severe Covid-19. New England Journal of Medicine, 382(24), 2327–2336. 10.1056/NEJMoa2007016 PubMed DOI PMC
Harrach, M. F., & Drossel, B. (2014). Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity. The Journal of Chemical Physics, 140(17), 174501–174514. 10.1063/1.4872239 PubMed DOI
Hehre, W., Ohlinger, S., Klunzinger, P., Deppmeier, B., Driessen, A., Johnson, J., Ohsan, P. (2006). Spartan’08 Tutorial and User's Guide; Q-CHEM, INC.: Irvine, CA, USA. ISBN 978-1-890661-38-4
Hendaus, M. A. (2020). Remdesivir in the treatment of Coronavirus Disease 2019 (COVID-19): A simplified summary. Journal of Biomolecular Structure and Dynamics. 10.1080/07391102.2020.1767691 PubMed DOI PMC
Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008, March). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. http://pubs.acs.org/doi/abs/10.1021/ct700301q. 10.1021/ct700301q PubMed DOI
Humphrey, W., Dalke, A., & Schulten, K. (1996). VDM: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–28. noplates,10.1016/0263-7855(96)00018-5 PubMed DOI
Jakalian, A., Jack, D. B., & Bayly, C. I. (2002, December). Fast, efficient generation of high-quality atomic charges. AM1-BCC Model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641. 10.1002/jcc.10128 PubMed DOI
Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature, 582(7811), 289–293. (April). 10.1038/s41586-020-2223-y PubMed DOI
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. 10.1063/1.445869 DOI
Kaminski, G., Friesner, R., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. 10.1021/jp003919d DOI
Klemm, T., Ebert, G., Calleja, D. J., Allison, C. C., Richardson, L. W., Bernardini, J. P., Lu, B. G., Kuchel, N. W., Grohmann, C., Shibata, Y., Gan, Z. Y., Cooney, J. P., Doerflinger, M., Au, A. E., Blackmore, T. R., Heden van Noort, G. J., Geurink, P. P., Ovaa, H., Newman, J., … Komander, D. (2020). Mechanism and inhibition of the papain‐like protease, PLpro, of SARS‐CoV‐2. The EMBO Journal, 39(18), 1–17. 10.15252/embj.2020106275 PubMed DOI PMC
Korb, O., Stützle, T., & Exner, T. E. (2009). Empirical scoring functions for advanced protein-ligand docking with PLANTS. Journal of Chemical Information and Modeling, 49(1), 84–96. 10.1021/ci800298z PubMed DOI
Kumari, R., Kumar, R., Lynn, A., & Lynn, A. (2014, July 28). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. http://www.ncbi.nlm.nih.gov/pubmed/24850022. 10.1021/ci500020m PubMed DOI
Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. 10.1021/jp003020w DOI
Martínez, L., Borin, I. A., & Skaf, M. S. (2007). Fundamentos de Simulação Por Dinâmica Molecular. In Morgon N. H. & Coutinho K. (Eds.), Métodos de Química Teórica e Modelagem Molecular (pp. 413–452). Livraria da Física.
Naik, V. R., Munikumar, M., Ramakrishna, U., Srujana, M., Goudar, G., Naresh, P., Kumar, B. N., & Hemalatha, R. (2020). Remdesivir (GS-5734) as a therapeutic option of 2019-NCOV main protease – in silico approach. Journal of Biomolecular Structure and Dynamics. 10.1080/07391102.2020.1781694 PubMed DOI PMC
Ortiz-Prado, E., Simbaña-Rivera, K., Gómez- Barreno, L., Rubio-Neira, M., Guaman, L. P., Kyriakidis, N. C., Muslin, C., Jaramillo, A. M. G., Barba-Ostria, C., Cevallos-Robalino, D., Sanches-SanMiguel, H., Unigarro, L., Zalakeviciute, R., Gadian, N., & López-Cortés, A. (2020). Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus disease 2019 (COVID-19), a comprehensive literature review. Diagnostic Microbiology and Infectious Disease, 98(1), 115094. 10.1016/j.diagmicrobio.2020.115094 PubMed DOI PMC
Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. 10.1063/1.328693 DOI
Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England)), 29(7), 845–854. 10.1093/bioinformatics/btt055 PubMed DOI PMC
Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019, December 28). Drug repurposing: Progress, challenges and recommendations. Nature Reviews. Drug Discovery, 18(1), 41–58. 10.1038/nrd.2018.168 PubMed DOI
Rathnayake, A. D., Zheng, J., Kim, Y., Perera, K. D., Mackin, S., Meyerholz, D. K., Kashipathy, M. M., Battaile, K. P., Lovell, S., Perlman, S., Groutas, W. C., & Chang, K.-O. (2020). 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV–infected mice. Science Translational Medicine, 12(557), eabc5332. 10.1126/scitranslmed.abc5332 PubMed DOI PMC
Reed, A. E., Weinstock, R. B., & Weinhold, F. (1985). Natural population analysis. The Journal of Chemical Physics, 83(2), 735–746. 10.1063/1.449486 DOI
Ribeiro, A. A. S. T., Horta, B. A. C., & de Alencastro, R. B. (2008). MKTOP: A program for automatic construction of molecular topologies. Journal of the Brazilian Chemical Society, 19(7), 1433–1435. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532008000700031&lng=en&nrm=iso&tlng=en. 10.1590/S0103-50532008000700031 DOI
Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - Antechamber python parser interface. BMC Research Notes, 5(1), 367. 10.1186/1756-0500-5-367 PubMed DOI PMC
Stewart, J. J. P. (2004). Optimization of parameters for semiempirical methods IV: Extension of MNDO, AM1, and PM3 to more main group elements. Journal of Molecular Modeling, 10(2), 155–164. 10.1007/s00894-004-0183-z PubMed DOI
Thomsen, R., & Christensen, M. H. (2006, June 1). MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. 10.1021/jm051197e PubMed DOI
Turner, P. J. (2005). XMGRACE, version 5.1.25. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology.
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. 10.1002/jcc.20291 PubMed DOI
Velavan, T. P., & Meyer, C. G. (2020). The COVID-19 epidemic. Tropical Medicine & International Health : TM & Ih, 25(3), 278–280. 10.1111/tmi.13383 PubMed DOI PMC
Wang, J., Cieplak, P., & Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21(12), 1049–1074. 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F DOI
Wang, Y., Zhang, D., Du, G., Du, R., Zhao, J., Jin, Y., Fu, S., Gao, L., Cheng, Z., Lu, Q., Hu, Y., Luo, G., Wang, K., Lu, Y., Li, H., Wang, S., Ruan, S., Yang, C., Mei, C., … Wang, C. (2020). Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. The Lancet, 395(10236), 1569–1578. 10.1016/S0140-6736(20)31022-9 PubMed DOI PMC
Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020, March). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, N.Y.).), 367(6485), 1444–1448. 10.1126/science.abb2762 PubMed DOI PMC
Molecular modeling study of natural products as potential bioactive compounds against SARS-CoV-2