Açaí (Euterpe oleracea Mart.) Seed Oil Exerts a Cytotoxic Role over Colorectal Cancer Cells: Insights of Annexin A2 Regulation and Molecular Modeling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
002/2019 UNIVERSAL
Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão
Financial CODE 001
Coordenação de Aperfeicoamento de Pessoal de Nível Superior
PubMed
37512496
PubMed Central
PMC10384432
DOI
10.3390/metabo13070789
PII: metabo13070789
Knihovny.cz E-zdroje
- Klíčová slova
- Annexin A2, Euterpe oleracea Mart., apoptosis, autophagy, polyphenols,
- Publikační typ
- časopisecké články MeSH
Açaí, Euterpe oleracea Mart., is a native plant from the Amazonian and is rich in several phytochemicals with anti-tumor activities. The aim was to analyze the effects of açaí seed oil on colorectal adenocarcinoma (ADC) cells. In vitro analyses were performed on CACO-2, HCT-116, and HT-29 cell lines. The strains were treated with açaí seed oil for 24, 48, and 72 h, and cell viability, death, and morphology were analyzed. Molecular docking was performed to evaluate the interaction between the major compounds in açaí seed oil and Annexin A2. The viability assay showed the cytotoxic effect of the oil in colorectal adenocarcinoma cells. Acai seed oil induced increased apoptosis in CACO-2 and HCT-116 cells and interfered with the cell cycle. Western blotting showed an increased expression of LC3-B, suggestive of autophagy, and Annexin A2, an apoptosis regulatory protein. Molecular docking confirmed the interaction of major fatty acids with Annexin A2, suggesting a role of açaí seed oil in modulating Annexin A2 expression in these cancer cell lines. Our results suggest the anti-tumor potential of açaí seed oil in colorectal adenocarcinoma cells and contribute to the development of an active drug from a known natural product.
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Brasil, Instituto Nacional de Câncer José Alencar Gomes da Silva . Estimativa 2023: Incidência de Câncer no Brasil. Instituto Nacional de Câncer Rio de Janeiro; Rio de Janeiro, Brazil: 2022. [(accessed on 10 January 2023)]. 160p. Available online: http://www.inca.gov.br.
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Sistema de Produção do Açaí. 2006. [(accessed on 8 August 2018)]. Available online: http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Acai/SistemaProducaoAcai_2ed/index.htm.
Gallori S., Bilia A.R., Bergonzi M.C., Barbosa W.L.R., Vincieri F.F. Polyphenolic constituents of anthocyanins from the açaí fruit (Euterpe oleracea) Mart. Cienc. Tecnol. Aliment. 2004;20:388–390. doi: 10.1365/s10337-004-0305-x. DOI
Rodrigues R.B., Lichtenthäler R., Zimmermann B.F., Papagiannopoulos M., Fabricius H., Marx F., Maia J.G.S., Almeida O. Total Oxidant Scavenging Capacity of Euterpe oleracea Mart. (Açaí) Seeds and Identification of Their Polyphenolic Compounds. J. Agric. Food Chem. 2006;54:4162–4167. doi: 10.1021/jf058169p. PubMed DOI
Schauss A.G., Wu X., Prior R.L., Ou B., Patel D., Huang D., Kababick J.P. Phytochemical and Nutrient Composition of the Freeze-Dried Amazonian Palm Berry, Euterpe oleraceae Mart. (Acai) J. Agric. Food Chem. 2006;54:8598–8603. doi: 10.1021/jf060976g. PubMed DOI
Chin Y.-W., Chai H.-B., Keller W.J., Kinghorn A.D. Lignans and Other Constituents of the Fruits of Euterpe oleracea (Açai) with Antioxidant and Cytoprotective Activities. J. Agric. Food Chem. 2008;56:7759–7764. doi: 10.1021/jf801792n. PubMed DOI
Mantovani I.S.B., Fernandes S.B.O., Menezes F.S. Constituintes apolares do fruto do açaí (Euterpe oleracea M.-Arecaceae) Rev. Bras. Farm. 2003;13:41–42. doi: 10.1590/S0102-695X2003000300016. DOI
Oliveira M.S.P., Carvalho J.E.U., Nascimento W.M.O., Müller C.H. Cultivo do Açaizeiro Para Produção de Frutos. Ministério Da Agriculyura Pecuária E Abast; Brasilia, Brazil: 2002.
Mourão L. História e natureza: Do açaí ao palmito. Rev. Territ. E Front. 2010;3:74–96. doi: 10.22228/rt-f.v3i2.69. DOI
Lee R., Balick M.J. Palms, People, and Health. Explore. 2008;4:59–62. doi: 10.1016/j.explore.2007.10.009. PubMed DOI
Goulding M., Smith N. Palms: Sentinels for Amazon Conservation. Amazon Conservation Association & Missouri Botanical Garden; St. Louis, MO, USA: 2007. p. 356.
Henderson A. The Palms of the Amazon. University Press; Oxford, UK: 1995.
Brian M.B. Etnobotany of the Chacobo Indians and Their Palms Advanced in Economic Botany. The New York Botanic Garden; New York, NY, USA: 1988.
Prance G.H., Silva M.F. Árvores de Manaus. INPA; Manaus, Brazil: 1975. 312p
Kahn F., Granville J. Palms in Forest Ecosystems of Amazonia, Ecological Studies No. 95. Springer; New York, NY, USA: 1992.
Marinho B.G., Herdy S.A., Sá A.C., Santos G.B., Matheus M.E., Menezes F.S., Fernandes P.D. Atividade antinociceptiva de extratos de açaí (Euterpe oleraceae Mart.) Rev. Bras. Farm. 2002;12:52–53. doi: 10.1590/S0102-695X2002000300025. DOI
Heitor R.D.S., Daniele D.C.D.A., Ariadna L.P., Hady K., Jesus R.R.A., José C.T.C., Da Silva H.R., Assis D.D.C.D., Prada A.L., Keita H., et al. Euterpe oleracea Mart. (aai): An old known plant with a new perspective. Afr. J. Pharm. Pharmacol. 2016;10:995–1006. doi: 10.5897/AJPP2016.4686. DOI
Peixoto H., Roxo M., Krstin S., Wang X., Wink M. Anthocyanin-rich extract of Acai (Euterpe precatoria Mart.) mediates neuroprotective activities in Caenorhabditis elegans. J. Funct. Foods. 2016;26:385–393. doi: 10.1016/j.jff.2016.08.012. DOI
Romualdo G.R., Fragoso M.F., Borguini R.G., de Araújo Santiago M.C.P., Fernandes A.A.H., Barbisan L.F. Protective effects of spray-dried açaí (Euterpe oleracea Mart.) fruit pulp against initiation step of colon carcinogenesis. Food Res. Int. 2015;77:432–440. doi: 10.1016/j.foodres.2015.08.037. DOI
Torma P.D.C.M.R., Brasil A.V.S., Carvalho A.V., Jablonski A., Rabelo T.K., Moreira J.C.F., Gelain D.P., Flôres S.H., Augusti P.R., Rios A.D.O. Hydroethanolic extracts from different genotypes of açaí (Euterpe oleracea) presented antioxidant potential and protected human neuron-like cells (SH-SY5Y) Food Chem. 2017;222:94–104. doi: 10.1016/j.foodchem.2016.12.006. PubMed DOI
Yamaguchi K.K.D.L., Pereira L.F.R., Lamarão C.V., Lima E.S., da Veiga-Junior V.F. Amazon acai: Chemistry and biological activities: A review. Food Chem. 2015;179:137–151. doi: 10.1016/j.foodchem.2015.01.055. PubMed DOI
Melhorança Filho A.L., Pereira M.R.R. Atividade antimicrobiana de óleos extraídos de açaí e de pupunha sobre o desenvolvimento de Pseudomonas aeruginosa e Staphylococcus aureus. Biosci. J. 2012;28:598–603.
Magalhães T.S.S.d.A., Macedo P.C.d.O., Pacheco S.Y.K., da Silva S.S., Barbosa E.G., Pereira R.R., Costa R.M.R., Junior J.O.C.S., Ferreira M.A.d.S., de Almeida J.C., et al. Development and Evaluation of Antimicrobial and Modulatory Activity of Inclusion Complex of Euterpe oleracea Mart. Oil and β-Cyclodextrin or HP-β-Cyclodextrin. Int. J. Mol. Sci. 2020;21:942. doi: 10.3390/ijms21030942. PubMed DOI PMC
Favacho H.A.S., Oliveira B.R., Santos K.C., Medeiros B.J.L., Sousa P.J.C., Perazzo F.F., Carvalho J.C.T. Anti-inflammatory and antinociceptive activities of Euterpe oleracea Mart., Arecaceae, oil. Rev. Bras. Farm. 2011;21:105–114. doi: 10.1590/S0102-695X2011005000007. DOI
Souza B.S.F., Carvalho H.O., Ferreira I.M., da Cunha E.L., Barros A.S., Taglialegna T., Carvalho J.C. Effect of the treatment with Euterpe oleracea Mart. oil in rats with Triton-induced dyslipidemia. Biomed. Pharmacother. 2017;90:542–547. doi: 10.1016/j.biopha.2017.04.005. PubMed DOI
Marques E.S., Tsuboy M.S.F., Carvalho J.C.T., Rosa P.C.P., Perazzo F.F., Gaivão I.O.M., Maistro E.L. Research Article First cytotoxic, genotoxic, and antigenotoxic assessment of Euterpe oleracea fruit oil (açaí) in cultured human cells. Genet. Mol. Res. 2017;16:gmr16039700. doi: 10.4238/gmr16039700. PubMed DOI
Stoner G.D., Wang L.-S., Seguin C., Rocha C., Stoner K., Chiu S., Kinghorn A.D. Multiple Berry Types Prevent N-Nitrosomethylbenzylamine-Induced Esophageal Cancer in Rats. Pharm. Res. 2010;27:1138–1145. doi: 10.1007/s11095-010-0102-1. PubMed DOI PMC
Fragoso M.F., Prado M.G., Barbosa L., Rocha N.S., Barbisan L.F. Inhibition of Mouse Urinary Bladder Carcinogenesis by Açai Fruit (Euterpe oleraceae Martius) Intake. Plant Foods Hum. Nutr. 2012;67:235–241. doi: 10.1007/s11130-012-0308-y. PubMed DOI
Fragoso M.F., Romualdo G.R., Ribeiro D.A., Barbisan L.F. Açai (Euterpe oleracea Mart.) feeding attenuates dimethylhydrazine-induced rat colon carcinogenesis. Food Chem. Toxicol. 2013;58:68–76. doi: 10.1016/j.fct.2013.04.011. PubMed DOI
Fragoso M.F., Romualo G.R., Vanderveer L.A., Franc-Barraza J., Cukierman E., Clapper M.L., Carvalho R.F., Barbisan L.F. Lyophilized açaí pulp (Euterpe oleracea Mart.) attenuates colitis-associated colon carcinogenesis while its main an-thocyanin has the potential to affect the motility of colon cancer cells. Food Chem. Toxicol. 2018;121:237–245. doi: 10.1016/j.fct.2018.08.078. PubMed DOI
Choi Y.J., Kim N., Nam R.H., Lee S., Lee H.S., Lee H.-N., Surh Y.-J., Lee D.H. Açaí Berries Inhibit Colon Tumorigenesis in Azoxymethane/Dextran Sulfate Sodium-Treated Mice. Gut Liver. 2017;11:243–252. doi: 10.5009/gnl16068. PubMed DOI PMC
Dias M.M.D.S., Noratto G., Martino H.S.D., Arbizu S., Peluzio M.D.C.G., Talcott S., Ramos A.M., Mertens-Talcott S.U. Pro-Apoptotic Activities of Polyphenolics from Açai (Euterpe oleracea Martius) in Human SW-480 Colon Cancer Cells. Nutr. Cancer. 2014;66:1394–1405. doi: 10.1080/01635581.2014.956252. PubMed DOI
Monge-Fuentes V., Muehlmann L.A., Longo J.P.F., Silva J.R., Fascineli M.L., de Souza P.E.N., Faria F., Degterev I.A., Rodriguez A., Carneiro F.P., et al. Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma. J. Photochem. Photobiol. B Biol. 2017;166:301–310. doi: 10.1016/j.jphotobiol.2016.12.002. PubMed DOI
Alessandra-Perini J., Perini J.A., Rodrigues-Baptista K.C., de Moura R.S., Junior A.P., dos Santos T.A., Souza P.J.C., Nasciutti L.E., Machado D.E. Euterpe oleracea extract inhibits tumorigenesis effect of the chemical carcinogen DMBA in breast experimental cancer. BMC Complement. Altern. Med. 2018;18:116. doi: 10.1186/s12906-018-2183-z. PubMed DOI PMC
Silva D.F., Vidal F.C.B., Santos D., Costa M.C.P., Morgado-Díaz J.A., Nascimento M.D.D.S.B., De Moura R.S. Cytotoxic effects of Euterpe oleracea Martius in malignant cell lines. BMC Complement. Altern. Med. 2014;14:175. doi: 10.1186/1472-6882-14-175. PubMed DOI PMC
Silva M.A.C.N., Costa J.H., Pacheco-Fill T., Ruiz A.L.T.G., Vidal F.C.B., Borges K.R.A., Guimarães S.J.A., de Azevedo-Santos A.P.S., Buglio K.E., Foglio M.A., et al. Açai (Euterpe oleracea Martius) Seed Extract Induces ROS Production and Cell Death in MCF-7 Breast Cancer Cell Line. Molecules. 2021;26:3546. doi: 10.3390/molecules26123546. PubMed DOI PMC
Freitas D.d.S., Morgado-Díaz J., Gehren A.S., Vidal F.C.B., Fernandes R.M.T., Romão W., Tose L.V., Frazão F.N.S., Costa M.C.P., Silva D.F., et al. Cytotoxic analysis and chemical characterization of fractions of the hydroalcoholic extract of the Euterpe oleracea Martius seed in the MCF-7 cell line. J. Pharm. Pharmacol. 2017;69:714–721. doi: 10.1111/jphp.12679. PubMed DOI
Chiang Y., Rizzino A., Sibenaller Z.A., Wold M.S., Vishwanatha J.K. Specific down-regulation of Annexin II expres-sion in human cells interferes with cell proliferation. Mol. Cell. Biochem. 1999;199:139–147. doi: 10.1023/A:1006942128672. PubMed DOI
de Moura R.S., da Costa G.F., Moreira A.S.B., Queiroz E.F., Moreira D.D.C., Garcia-Souza E.P., Resende C., Moura A.S., Teixeira M.T. Vitis vinifera L. grape skin extract activates the insulin-signalling cascade and reduces hyperglycaemia in alloxan-induced diabetic mice. J. Pharm. Pharmacol. 2011;64:268–276. doi: 10.1111/j.2042-7158.2011.01395.x. PubMed DOI
Hartman L., Lago R.C. Rapid preparation of fatty acid methyl esters from lipids. Lab. Pract. 1973;22:475–476. PubMed
De Albuquerque-Xavier A.C., Bastos L.G.R., De Freitas J.C.M., Leve F., De Souza W.F., De Araujo W.M., Wanderley J.L.M., Tanaka M.N., De Souza W., Morgado-Díaz J.A. Blockade of irradiation-induced autophagosome formation impairs proliferation but does not enhance cell death in HCT-116 human colorectal carcinoma cells. Int. J. Oncol. 2012;40:1267–1276. doi: 10.3892/ijo.2012.1329. PubMed DOI PMC
Shao C., Zhang F., Kemp M.M., Linhardt R.J., Waisman D.M., Head J.H., Seaton B.A. Crystallographic Analysis of Calcium-dependent Heparin Binding to Annexin A2. J. Biol. Chem. 2006;281:31689–31695. doi: 10.1016/S0021-9258(19)84082-6. PubMed DOI PMC
Hehre W.J., Deppmeier B.J., Klunzinger P.E. PC Spartan Pro molecular modeling for desktop. Chem. Eng. News. 1999;77:2.
Reed A.E., Weinstock R.B., Weinhold F. Natural population analysis. J. Chem. Phys. 1985;83:735–746. doi: 10.1063/1.449486. DOI
Stewart J.J.P. Optimization of parameters for semiempirical methods IV: Extension of MNDO, AM1, and PM3 to more main group elements. J. Mol. Model. 2004;10:155–164. doi: 10.1007/s00894-004-0183-z. PubMed DOI
de Almeida J.S., Cavalcante S.F.A., Dolezal R., Kuca K., Musilek K., Jun D., França T.C. Surface screening, molecular modeling and in vitro studies on the interactions of aflatoxin M1 and human enzymes acetyl- and butyrylcholinesterase. Chem. Interact. 2019;308:113–119. doi: 10.1016/j.cbi.2019.05.022. PubMed DOI
Botelho F.D., dos Santos M.C., Gonçalves A.d.S., Kuca K., Valis M., LaPlante S.R., França T.C.C., de Almeida J.S.F.D. Ligand-Based Virtual Screening, Molecular Docking, Molecular Dynamics, and MM-PBSA Calculations towards the Identification of Potential Novel Ricin Inhibitors. Toxins. 2020;12:746. doi: 10.3390/toxins12120746. PubMed DOI PMC
Botelho F.D., Santos M.C., Gonçalves A.S., França T.C.C., LaPlante S.R., de Almeida J.S.F.D. Identification of novel potential ricin inhibitors by virtual screening, molecular docking, molecular dynamics and MM-PBSA calculations: A drug repurposing approach. J. Biomol. Struct. Dyn. 2022;40:5309–5319. doi: 10.1080/07391102.2020.1870154. PubMed DOI
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Pronk S., Páll S., Schulz R., Larsson P., Bjelkmar P., Apostolov R., Shirts M.R., Smith J.C., Kasson P.M., Van Der Spoel D., et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854. doi: 10.1093/bioinformatics/btt055. PubMed DOI PMC
Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI
Kaminski G.A., Friesner R.A., Tirado-Rives J., Jorgensen W.L. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B. 2001;105:6474–6487. doi: 10.1021/jp003919d. DOI
da Silva A.W.S., Vranken W.F. ACPYPE—AnteChamber PYthon Parser interface. BMC Res. Notes. 2012;5:367. doi: 10.1186/1756-0500-5-367. PubMed DOI PMC
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Parrinello M., Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Turner P.J. XMGRACE. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology; Beaverton, OR, USA: 2005.
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Barth S., Glick D., Macleod K.F. Autophagy: Assays and artifacts. J. Pathol. 2010;221:117–124. doi: 10.1002/path.2694. PubMed DOI PMC
Bharadwaj A., Bydoun M., Holloway R., Waisman D. Annexin A2 Heterotetramer: Structure and Function. Int. J. Mol. Sci. 2013;14:6259–6305. doi: 10.3390/ijms14036259. PubMed DOI PMC
Christensen M.V., Høgdall C.K., Jochumsen K.M., Høgdall E.V. Annexin A2 and cancer: A systematic review. Int. J. Oncol. 2018;52:5–18. doi: 10.3892/ijo.2017.4197. PubMed DOI
Madureira P.A., O’Connell P.A., Surette A.P., Miller V.A., Waisman D.M. The Biochemistry and Regulation of S100A10: A Multifunctional Plasminogen Receptor Involved in Oncogenesis. J. Biomed. Biotechnol. 2012;2012:353687. doi: 10.1155/2012/353687. PubMed DOI PMC
Lichtenthäler R., Rodrigues R.B., Maia J.G.S., Papagiannopoulos M., Fabricius H., Marx F. Total oxidant scavenging capacities of Euterpe oleracea Martius (Açaí) fruits. Int. J. Food Sci. Nutr. 2005;56:53–64. doi: 10.1080/09637480500082082. PubMed DOI
Pacheco-Palencia L.A., Duncan C.E., Talcott S.T. Phytochemical composition and thermal stability of two commercial açai species, Euterpe oleracea and Euterpe precatoria. Food Chem. 2009;115:1199–1205. doi: 10.1016/j.foodchem.2009.01.034. DOI
Heinrich M., Dhanji T., Casselman I. Açai (Euterpe oleracea Martius)—A phytochemical and pharmacological assessment of the species’ health claims. Phytochem. Lett. 2011;4:10–21. doi: 10.1016/j.phytol.2010.11.005. DOI
Mulabagal V., Calderón A.I. Liquid chromatography/mass spectrometry based fingerprinting analysis and mass profiling of Euterpe oleracea (açaí) dietary supplement raw materials. Food Chem. 2012;134:1156–1164. doi: 10.1016/j.foodchem.2012.02.123. PubMed DOI
Yuyama L.K.O., Aguiar J.P.L., Filho D.F.S., Yuyama K., Varejão M.D.J., Favaro D.I.T., Vasconcellos M.B.A., Pimentel S.A., Caruso M.S.F. Physicochemical characterization of acai juice of Euterpe precatoria Mart. from different Amazonian ecosystems. Acta Amaz. 2011;41:545–552. doi: 10.1590/S0044-59672011000400011. DOI
Nascimento R.J.S.D., Couri S., Antoniassi R., Freitas S.P. Composição em ácidos graxos do óleo da polpa de açaí extraído com enzimas e com hexano. Rev. Bras. De Frutic. 2008;30:498–502. doi: 10.1590/S0100-29452008000200040. DOI
Zengin G., Mahomoodally M.F., Aktumsek A., Jekő J., Cziáky Z., Rodrigues M.J., Custodio L., Polat R., Cakilcioglu U., Ayna A., et al. Chemical Profiling and Biological Evaluation of Nepeta baytopii Extracts and Essential Oil: An Endemic Plant from Turkey. Plants. 2021;10:1176. doi: 10.3390/plants10061176. PubMed DOI PMC
Gulcin İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020;94:651–715. doi: 10.1007/s00204-020-02689-3. PubMed DOI
Sylvestre M., Legault J., Dufour D., Pichette A. Chemical composition and anticancer activity of leaf essential oil of Myrica gale L. Phytomedicine. 2005;12:299–304. doi: 10.1016/j.phymed.2003.12.004. PubMed DOI
Manosroi J., Dhumtanom P., Manosroi A. Anti-proliferative activity of essential oil extracted from Thai medicinal plants on KB and P388 cell lines. Cancer Lett. 2006;235:114–120. doi: 10.1016/j.canlet.2005.04.021. PubMed DOI
Wei F.-X., Li M.-Y., Song Y.-H., Li H.-Z. Apoptosis and activity changes of telomerase induced by essential oil from pine needles in HepG2 cell line. J. Chin. Med. Mater. 2008;31:1197–1200. PubMed
Jo J.-R., Park J.S., Park Y.-K., Chae Y.Z., Lee G.-H., Park G.-Y., Jang B.-C. Pinus densiflora leaf essential oil induces apoptosis via ROS generation and activation of caspases in YD-8 human oral cancer cells. Int. J. Oncol. 2012;40:1238–1245. doi: 10.3892/ijo.2011.1263. PubMed DOI PMC
Pacheco-Palencia L.A., Mertens-Talcott S., Talcott S.T. Chemical Composition, Antioxidant Properties, and Thermal Stability of a Phytochemical Enriched Oil from Açai (Euterpe oleracea Martius) J. Agric. Food Chem. 2008;56:4631–4636. doi: 10.1021/jf800161u. PubMed DOI
Filomeni G., De Zio D., Cecconi F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ. 2015;22:377–388. doi: 10.1038/cdd.2014.150. PubMed DOI PMC
Yun C.W., Lee S.H. The Roles of Autophagy in Cancer. Int. J. Mol. Sci. 2018;19:3466. doi: 10.3390/ijms19113466. PubMed DOI PMC
Li L., Tan J., Miao Y., Lei P., Zhang Q. ROS and Autophagy: Interactions and Molecular Regulatory Mechanisms. Cell. Mol. Neurobiol. 2015;35:615–621. doi: 10.1007/s10571-015-0166-x. PubMed DOI
Maruyama T., Noda N.N. Autophagy-regulating protease Atg4: Structure, function, regulation and inhibition. J. Antibiot. 2017;71:72–78. doi: 10.1038/ja.2017.104. PubMed DOI PMC
Scherz-Shouval R., Shvets E., Fass E., Shorer H., Gil L., Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007;26:1749–1760. doi: 10.1038/sj.emboj.7601623. PubMed DOI PMC
Poillet-Perez L., Despouy G., Delage-Mourroux R., Boyer-Guittaut M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol. 2015;4:184–192. doi: 10.1016/j.redox.2014.12.003. PubMed DOI PMC
Emerling B.M., Weinberg F., Snyder C., Burgess Z., Mutlu G.M., Viollet B., Budinger G.S., Chandel N.S. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free. Radic. Biol. Med. 2009;46:1386–1391. doi: 10.1016/j.freeradbiomed.2009.02.019. PubMed DOI PMC
Spijkers-Hagelstein J.A.P., Pinhanços S.M., Schneider P., Pieters R., Stam R.W. Src kinase-induced phosphorylation of Annexin A2 mediates glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia. Leukemia. 2012;27:1063–1071. doi: 10.1038/leu.2012.372. PubMed DOI
Gopalakrishnapillai A., Kolb E.A., Dhanan P., Mason R.W., Napper A., Barwe S.P. Disruption of Annexin II/p11 Interaction Suppresses Leukemia Cell Binding, Homing and Engraftment, and Sensitizes the Leukemia Cells to Chemotherapy. PLoS ONE. 2015;10:e0140564. doi: 10.1371/journal.pone.0140564. PubMed DOI PMC
Yang J., Cheng T.-T., Wang L.-N., Chen W., Li X. The expression and clinical significance of Annexin II in clear-cell renal cell carcinoma. Chin. J. Cell. Mol. Immunol. 2012;28:59–62. PubMed
Sharma M.R., Koltowski L., Ownbey R.T., Tuszynski G.P., Sharma M.C. Angiogenesis-associated protein Annexin II in breast cancer: Selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp. Mol. Pathol. 2006;81:146–156. doi: 10.1016/j.yexmp.2006.03.003. PubMed DOI
Choi C.H., Chung J.-Y., Chung E.J., Sears J.D., Lee J.-W., Bae D.-S., Hewitt S.M. Prognostic significance of Annexin A2 and Annexin A4 expression in patients with cervical cancer. BMC Cancer. 2016;16:448. doi: 10.1186/s12885-016-2459-y. PubMed DOI PMC
Xiu D., Liu L., Qiao F., Yang H., Cui L., Liu G. Annexin A2 Coordinates STAT3 to Regulate the Invasion and Migration of Colorectal Cancer Cells In Vitro. Gastroenterol. Res. Pract. 2016;2016:3521453. doi: 10.1155/2016/3521453. PubMed DOI PMC
Tristante E., Martínez C.M., Jiménez S., Mora L., Carballo F., Martínez-Lacaci I., de Torre-Minguela C. Association of a characteristic membrane pattern of Annexin A2 with high invasiveness and nodal status in colon adenocarcinoma. Transl. Res. 2015;166:196–206. doi: 10.1016/j.trsl.2015.02.006. PubMed DOI
Deng L., Gao Y., Li X., Cai M., Wang H., Zhuang H., Tan M., Liu S., Hao Y., Lin B. Expression and clinical significance of Annexin A2 and human epididymis protein 4 in endometrial carcinoma. J. Exp. Clin. Cancer Res. 2015;34:96. doi: 10.1186/s13046-015-0208-8. PubMed DOI PMC
Gao H., Yu B., Yan Y., Shen J., Zhao S., Zhu J., Qin W., Gao Y. Correlation of expression levels of ANXA2, PGAM1, and CALR with glioma grade and prognosis. J. Neurosurg. 2013;118:846–853. doi: 10.3171/2012.9.JNS112134. PubMed DOI
Masaki T., Mohammad H.S., Kurokohchi K., Yoneyama H., Tokuda M., Morishita A., Jian G., Shi L., Murota M., Tani J., et al. Annexin A2 expression and phosphorylation are up-regulated in hepatocellular carcinoma. Int. J. Oncol. 2008;33:1157–1163. doi: 10.3892/ijo_00000105. PubMed DOI
Wang Y.-X., Lv H., Li Z.-X., Li C., Wu X.-Y. Effect of shRNA Mediated Down-Regulation of Annexin A2 on Biological Behavior of Human Lung Adencarcinoma Cells A549. Pathol. Oncol. Res. 2012;18:183–190. doi: 10.1007/s12253-011-9427-2. PubMed DOI
Rocha M.R., Barcellos-De-Souza P., Sousa-Squiavinato A.C.M., Fernandes P.V., de Oliveira I.M., Boroni M., Morgado-Diaz J.A. Annexin A2 overexpression associates with colorectal cancer invasiveness and TGF-ß induced epithelial mesenchymal transition via Src/ANXA2/STAT3. Sci. Rep. 2018;8:11285. doi: 10.1038/s41598-018-29703-0. PubMed DOI PMC
Emoto K., Yamada Y., Sawada H., Fujimoto H., Ueno M., Takayama T., Kamada K., Naito A., Hirao S., Nakajima Y. Annexin II overexpression correlates with stromal tenascin-C overexpression: A prognostic marker in colorectal carcinoma. Cancer. 2001;92:1419–1426. doi: 10.1002/1097-0142(20010915)92:6<1419::AID-CNCR1465>3.0.CO;2-J. PubMed DOI
Singh P., Wu H., Clark C., Owlia A. Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells. Oncogene. 2007;26:425–440. doi: 10.1038/sj.onc.1209798. PubMed DOI