Effects of Ultrasound on Zinc Oxide/Vermiculite/Chlorhexidine Nanocomposite Preparation and Their Antibacterial Activity

. 2019 Sep 13 ; 9 (9) : . [epub] 20190913

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31540203

Microbial infection and biofilm formation are both problems associated with medical implants and devices. In recent years, hybrid organic-inorganic nanocomposites based on clay minerals have attracted significant attention due to their application potential in the field of antimicrobial materials. Organic drug/metal oxide hybrids exhibit improved antimicrobial activity, and intercalating the above materials into the interlayer of clay endows a long-term and controlled-release behavior. Since antimicrobial activity is strongly related to the structure of the material, ultrasonic treatment appears to be a suitable method for the synthesis of these materials as it can well control particle size distribution and morphology. This study aims to prepare novel, structurally stable, and highly antimicrobial nanocomposites based on zinc oxide/vermiculite/chlorhexidine. The influence of ultrasonic treatment at different time intervals and under different intercalation conditions (ultrasonic action in a breaker or in a Roset's vessel) on the structure, morphology, and particle size of prepared hybrid nanocomposite materials was evaluated by the following methods: scanning electron microscopy, X-ray diffraction, energy dispersive X-ray fluorescence spectroscopy, carbon phase analysis, Fourier transforms infrared spectroscopy, specific surface area measurement, particle size analysis, and Zeta potential analysis. Particle size analyses confirmed that the ultrasonic method contributes to the reduction of particle size, and to their homogenization/arrangement. Further, X-ray diffraction analysis confirmed that ultrasound intercalation in a beaker helps to more efficiently intercalate chlorhexidine dihydrochloride (CH) into the vermiculite interlayer space, while a Roset's vessel contributed to the attachment of the CH molecules to the vermiculite surface. The antibacterial activity of hybrid nanocomposite materials was investigated on Gram negative (Escherichia coli, Pseudomonas aeruginosa) and Gram positive (Staphylococcus aureus, Enterococcus faecalis) bacterial strains by finding the minimum inhibitory concentration. All hybrid nanocomposite materials prepared by ultrasound methods showed high antimicrobial activity after 30 min, with a long-lasting effect and without being affected by the concentration of the antibacterial components zinc oxide (ZnO) and CH. The benefits of the samples prepared by ultrasonic methods are the rapid onset of an antimicrobial effect and its long-term duration.

Zobrazit více v PubMed

Ho Y.S., McKay G. Batch Lead (II) removal from aqueous solution by peat: Equilibrium and kinetics. Trans. Chem. E Part B. 1999;77:165–173. doi: 10.1205/095758299529983. DOI

Sanchez C., Julián B., Belleville P., Popall M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 2005;15:3559–3592. doi: 10.1039/b509097k. DOI

Hűsing N., Hartmann S. Inorganic-Organic Hybrid Porous Materials. In: Merhari L., editor. Hybrid Nanocomposites for Nanotechnology: Electronic, Optical, Magnetic and Biomedical Applications. Springer; New York, NY, USA: 2009. pp. 131–171.

Meroni D., Ardizzone S. Preparation and Application of Hybrid Nanomaterials. Nanomaterials. 2018;8:891. doi: 10.3390/nano8110891. PubMed DOI PMC

Kalia S., Haldorai Y. Organic-Inorganic Hybrid Nanomaterials. Springer; New York, NY, USA: 2015. pp. 1–379.

Camargo P.H.C., Satyanarayana K.G.A., Wypych F. Nanocomposites: Synthesis, Structure, Properties and New Application Oppurtinities. Mater. Res. 2009;12:1–39. doi: 10.1590/S1516-14392009000100002. DOI

Sharifalhoseini Z., Entezari M.H., Jalal R. Direct and indirect sonication affect differently the microstructure and the morphology of ZnO nanoparticles: Optical behavior and its antibacterial activity. Ultrason. Sonochem. 2015;27:466–473. doi: 10.1016/j.ultsonch.2015.06.016. PubMed DOI

Nguyen A.N., Reinert L., Lévewue J.M., Beziat A., Dehaudt P., Juliaa J.F., Duclaux L. Preparation and characterization of micron and submicron-sized vermiculite powders by ultrasonic irradiation. Appl. Clay Sci. 2013;72:9–17. doi: 10.1016/j.clay.2012.12.007. DOI

Perez-Rodríguez J.L., Pascual J., Franco F., Jiménez de Haro M.C., Duran A., Ramírez del Valle V., Pérez-Maqueda L.A. The influence of ultrasound on the thermal behaviour of clay minerals. J. Eur. Ceram. Soc. 2006;26:747–753. doi: 10.1016/j.jeurceramsoc.2005.07.015. DOI

Ali F., Reinert L., Lévêque J.M., Duclaux L., Muller F., Saeed S., Shah S.S. Effect of sonication conditions: Solvent, time, temperature and reactor type on the preparation of micron sized vermiculite particles. Ultrason. Sonochem. 2014;21:1002–1009. doi: 10.1016/j.ultsonch.2013.10.010. PubMed DOI

Onder E., Sarier N., Ukuser G., Ozturk M., Arat R. Ultrasound assisted solvent free intercalation of montmorillonite with PEG1000: A new type of organoclay with improved thermal properties. Thermochim. Acta. 2013;566:24–35. doi: 10.1016/j.tca.2013.05.021. DOI

Holešová S., Štembírek J., Bartošová L., Pražanová G., Valášková M., Samlíková M., Pazdziora E. Antibacterial efficiency of vermiculite/chlorhexidine nanocomposites and results of the in vivo test of harmlessness of vermiculite. Mater. Sci. Eng. C. 2014;42:466–473. doi: 10.1016/j.msec.2014.05.054. PubMed DOI

Wu Y., Zhou N., Li W., Gu H., Fan Y., Yuan J. Long-term and controlled release of chlorhexidine-copper(II) from organically modified montmorillonite (OMMT) nanocomposites. Mater. Sci. Eng. C. 2013;33:752–757. doi: 10.1016/j.msec.2012.10.028. PubMed DOI

Li B., Yu S., Hwang J.Y., Shi S. Antibacterial Vermiculite Nano-Material. J. Miner. Mater. Charact. Eng. 2002;1:66–68.

Yamamoto O., Hotta M., Sawai J., Sasamoto T., Kojima H. Infulence of powder characteristic of ZnO on antibacterial activity. J. Ceram. Soc. Jpn. 1998;106:1007–1011. doi: 10.2109/jcersj.106.1007. DOI

Nair S., Sasidharan A., Divya Rani V.V., Menon D., Nair S., Manzoor K., Raina S. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Mater. Sci. Mater. Med. 2009;20:235–241. doi: 10.1007/s10856-008-3548-5. PubMed DOI

Aydin Sevinç B., Hanley L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J. Biomed. Mater. Res. B. 2010;94:22–31. doi: 10.1002/jbm.b.31620. PubMed DOI PMC

Čech Barabaszová K., Hundáková M., Mackovčáková M., Pazdziora E. Three methods for antibacterial ZnO nanoparticles preparation. Mater. Today Proc. 2018;5:S11–S19. doi: 10.1016/j.matpr.2018.05.052. DOI

Kumara R., Umarb A., Kumara G., Nalwad H.S. Antimicrobial properties of ZnO nanomaterials: A review. Ceram. Int. 2017;43:3940–3961. doi: 10.1016/j.ceramint.2016.12.062. DOI

Barabaszová K.Č., Rajhelová H., Smijová J., Hundáková M. Toxicity of the Zinc Oxide and Vermiculite/Zinc Oxide Nanomaterials. J. Nanosci. Nanotechnol. 2019;19:2977–2982. doi: 10.1166/jnn.2019.15845. PubMed DOI

Valášková M., Tokarský J., Čech Barabaszová K., Matějka V., Hundáková M., Pazdziora E., Kimmer D. New aspects on vermiculite filler in polyethylene. Appl. Clay Sci. 2013;72:110–116. doi: 10.1016/j.clay.2012.12.005. DOI

Čech Barabaszová K., Valášková M. Characterization of vermiculite particles after different milling techniques. Powder Technol. 2013;239:277–283. doi: 10.1016/j.powtec.2013.01.053. DOI

Sani H.A., Ahmad M.B., Hussein M.Z., Ibrahim N.A., Musa A., Saleh T.A. Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process Saf. Environ. 2017;109:97–105. doi: 10.1016/j.psep.2017.03.024. DOI

Čech Barabaszová K., Holešová S., Hundáková M., Pazdziora E., Ritz M. Antibacterial LDPE Nanocomposites Based on Zinc Oxide Nanoparticles/Vermiculite Nanofiller. J. Inorg. Organomet. Polym. Mater. 2017;27:986–995.

Valášková M., Kupková J., Simha Martynková G., Seidlerová J., Tomášek V., Ritz M., Kočí K., Klemm V., Rafaja D. Comparable study of vermiculites from four commercial deposits prepared with fixed ceria nanoparticles. Appl. Clay Sci. 2018;151:164–174. doi: 10.1016/j.clay.2017.10.006. DOI

Samlíková M., Holešová S., Hundáková M., Pazdziora E., Jankovič Ľ., Valášková M. Preparation of antibacterial chlorhexidine/vermiculite and release study. Int. J. Miner. Process. 2017;159:1–6. doi: 10.1016/j.minpro.2016.12.002. DOI

Scherrer P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachr. Ges. Wiss. Gott. 1918;2:98–100.

Farmer V.C. The Infrared Spectra of Minerals. Mineralogical Society; London, UK: 1974. The Layer Silicates.

Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd ed. John Wiley & Sons; Chichester, UK: 2001.

Čech Barabaszová K., Hundáková M., Pazdziora E. The Influence of zinc oxide concentration on antibacterial activity of the vermiculite nanocomposite; Proceedings of the 8th International Conference on Nanomaterials—Research and Application (NANOCON); Brno, Czech Republic. 19–21 October 2016; pp. 467–472.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...