Effects of Ultrasound on Zinc Oxide/Vermiculite/Chlorhexidine Nanocomposite Preparation and Their Antibacterial Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31540203
PubMed Central
PMC6781046
DOI
10.3390/nano9091309
PII: nano9091309
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial activity, chlorhexidine, mechanical stirring, ultrasonic intercalation, vermiculite, zinc oxide nanoparticles,
- Publikační typ
- časopisecké články MeSH
Microbial infection and biofilm formation are both problems associated with medical implants and devices. In recent years, hybrid organic-inorganic nanocomposites based on clay minerals have attracted significant attention due to their application potential in the field of antimicrobial materials. Organic drug/metal oxide hybrids exhibit improved antimicrobial activity, and intercalating the above materials into the interlayer of clay endows a long-term and controlled-release behavior. Since antimicrobial activity is strongly related to the structure of the material, ultrasonic treatment appears to be a suitable method for the synthesis of these materials as it can well control particle size distribution and morphology. This study aims to prepare novel, structurally stable, and highly antimicrobial nanocomposites based on zinc oxide/vermiculite/chlorhexidine. The influence of ultrasonic treatment at different time intervals and under different intercalation conditions (ultrasonic action in a breaker or in a Roset's vessel) on the structure, morphology, and particle size of prepared hybrid nanocomposite materials was evaluated by the following methods: scanning electron microscopy, X-ray diffraction, energy dispersive X-ray fluorescence spectroscopy, carbon phase analysis, Fourier transforms infrared spectroscopy, specific surface area measurement, particle size analysis, and Zeta potential analysis. Particle size analyses confirmed that the ultrasonic method contributes to the reduction of particle size, and to their homogenization/arrangement. Further, X-ray diffraction analysis confirmed that ultrasound intercalation in a beaker helps to more efficiently intercalate chlorhexidine dihydrochloride (CH) into the vermiculite interlayer space, while a Roset's vessel contributed to the attachment of the CH molecules to the vermiculite surface. The antibacterial activity of hybrid nanocomposite materials was investigated on Gram negative (Escherichia coli, Pseudomonas aeruginosa) and Gram positive (Staphylococcus aureus, Enterococcus faecalis) bacterial strains by finding the minimum inhibitory concentration. All hybrid nanocomposite materials prepared by ultrasound methods showed high antimicrobial activity after 30 min, with a long-lasting effect and without being affected by the concentration of the antibacterial components zinc oxide (ZnO) and CH. The benefits of the samples prepared by ultrasonic methods are the rapid onset of an antimicrobial effect and its long-term duration.
Zobrazit více v PubMed
Ho Y.S., McKay G. Batch Lead (II) removal from aqueous solution by peat: Equilibrium and kinetics. Trans. Chem. E Part B. 1999;77:165–173. doi: 10.1205/095758299529983. DOI
Sanchez C., Julián B., Belleville P., Popall M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 2005;15:3559–3592. doi: 10.1039/b509097k. DOI
Hűsing N., Hartmann S. Inorganic-Organic Hybrid Porous Materials. In: Merhari L., editor. Hybrid Nanocomposites for Nanotechnology: Electronic, Optical, Magnetic and Biomedical Applications. Springer; New York, NY, USA: 2009. pp. 131–171.
Meroni D., Ardizzone S. Preparation and Application of Hybrid Nanomaterials. Nanomaterials. 2018;8:891. doi: 10.3390/nano8110891. PubMed DOI PMC
Kalia S., Haldorai Y. Organic-Inorganic Hybrid Nanomaterials. Springer; New York, NY, USA: 2015. pp. 1–379.
Camargo P.H.C., Satyanarayana K.G.A., Wypych F. Nanocomposites: Synthesis, Structure, Properties and New Application Oppurtinities. Mater. Res. 2009;12:1–39. doi: 10.1590/S1516-14392009000100002. DOI
Sharifalhoseini Z., Entezari M.H., Jalal R. Direct and indirect sonication affect differently the microstructure and the morphology of ZnO nanoparticles: Optical behavior and its antibacterial activity. Ultrason. Sonochem. 2015;27:466–473. doi: 10.1016/j.ultsonch.2015.06.016. PubMed DOI
Nguyen A.N., Reinert L., Lévewue J.M., Beziat A., Dehaudt P., Juliaa J.F., Duclaux L. Preparation and characterization of micron and submicron-sized vermiculite powders by ultrasonic irradiation. Appl. Clay Sci. 2013;72:9–17. doi: 10.1016/j.clay.2012.12.007. DOI
Perez-Rodríguez J.L., Pascual J., Franco F., Jiménez de Haro M.C., Duran A., Ramírez del Valle V., Pérez-Maqueda L.A. The influence of ultrasound on the thermal behaviour of clay minerals. J. Eur. Ceram. Soc. 2006;26:747–753. doi: 10.1016/j.jeurceramsoc.2005.07.015. DOI
Ali F., Reinert L., Lévêque J.M., Duclaux L., Muller F., Saeed S., Shah S.S. Effect of sonication conditions: Solvent, time, temperature and reactor type on the preparation of micron sized vermiculite particles. Ultrason. Sonochem. 2014;21:1002–1009. doi: 10.1016/j.ultsonch.2013.10.010. PubMed DOI
Onder E., Sarier N., Ukuser G., Ozturk M., Arat R. Ultrasound assisted solvent free intercalation of montmorillonite with PEG1000: A new type of organoclay with improved thermal properties. Thermochim. Acta. 2013;566:24–35. doi: 10.1016/j.tca.2013.05.021. DOI
Holešová S., Štembírek J., Bartošová L., Pražanová G., Valášková M., Samlíková M., Pazdziora E. Antibacterial efficiency of vermiculite/chlorhexidine nanocomposites and results of the in vivo test of harmlessness of vermiculite. Mater. Sci. Eng. C. 2014;42:466–473. doi: 10.1016/j.msec.2014.05.054. PubMed DOI
Wu Y., Zhou N., Li W., Gu H., Fan Y., Yuan J. Long-term and controlled release of chlorhexidine-copper(II) from organically modified montmorillonite (OMMT) nanocomposites. Mater. Sci. Eng. C. 2013;33:752–757. doi: 10.1016/j.msec.2012.10.028. PubMed DOI
Li B., Yu S., Hwang J.Y., Shi S. Antibacterial Vermiculite Nano-Material. J. Miner. Mater. Charact. Eng. 2002;1:66–68.
Yamamoto O., Hotta M., Sawai J., Sasamoto T., Kojima H. Infulence of powder characteristic of ZnO on antibacterial activity. J. Ceram. Soc. Jpn. 1998;106:1007–1011. doi: 10.2109/jcersj.106.1007. DOI
Nair S., Sasidharan A., Divya Rani V.V., Menon D., Nair S., Manzoor K., Raina S. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Mater. Sci. Mater. Med. 2009;20:235–241. doi: 10.1007/s10856-008-3548-5. PubMed DOI
Aydin Sevinç B., Hanley L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J. Biomed. Mater. Res. B. 2010;94:22–31. doi: 10.1002/jbm.b.31620. PubMed DOI PMC
Čech Barabaszová K., Hundáková M., Mackovčáková M., Pazdziora E. Three methods for antibacterial ZnO nanoparticles preparation. Mater. Today Proc. 2018;5:S11–S19. doi: 10.1016/j.matpr.2018.05.052. DOI
Kumara R., Umarb A., Kumara G., Nalwad H.S. Antimicrobial properties of ZnO nanomaterials: A review. Ceram. Int. 2017;43:3940–3961. doi: 10.1016/j.ceramint.2016.12.062. DOI
Barabaszová K.Č., Rajhelová H., Smijová J., Hundáková M. Toxicity of the Zinc Oxide and Vermiculite/Zinc Oxide Nanomaterials. J. Nanosci. Nanotechnol. 2019;19:2977–2982. doi: 10.1166/jnn.2019.15845. PubMed DOI
Valášková M., Tokarský J., Čech Barabaszová K., Matějka V., Hundáková M., Pazdziora E., Kimmer D. New aspects on vermiculite filler in polyethylene. Appl. Clay Sci. 2013;72:110–116. doi: 10.1016/j.clay.2012.12.005. DOI
Čech Barabaszová K., Valášková M. Characterization of vermiculite particles after different milling techniques. Powder Technol. 2013;239:277–283. doi: 10.1016/j.powtec.2013.01.053. DOI
Sani H.A., Ahmad M.B., Hussein M.Z., Ibrahim N.A., Musa A., Saleh T.A. Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process Saf. Environ. 2017;109:97–105. doi: 10.1016/j.psep.2017.03.024. DOI
Čech Barabaszová K., Holešová S., Hundáková M., Pazdziora E., Ritz M. Antibacterial LDPE Nanocomposites Based on Zinc Oxide Nanoparticles/Vermiculite Nanofiller. J. Inorg. Organomet. Polym. Mater. 2017;27:986–995.
Valášková M., Kupková J., Simha Martynková G., Seidlerová J., Tomášek V., Ritz M., Kočí K., Klemm V., Rafaja D. Comparable study of vermiculites from four commercial deposits prepared with fixed ceria nanoparticles. Appl. Clay Sci. 2018;151:164–174. doi: 10.1016/j.clay.2017.10.006. DOI
Samlíková M., Holešová S., Hundáková M., Pazdziora E., Jankovič Ľ., Valášková M. Preparation of antibacterial chlorhexidine/vermiculite and release study. Int. J. Miner. Process. 2017;159:1–6. doi: 10.1016/j.minpro.2016.12.002. DOI
Scherrer P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachr. Ges. Wiss. Gott. 1918;2:98–100.
Farmer V.C. The Infrared Spectra of Minerals. Mineralogical Society; London, UK: 1974. The Layer Silicates.
Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd ed. John Wiley & Sons; Chichester, UK: 2001.
Čech Barabaszová K., Hundáková M., Pazdziora E. The Influence of zinc oxide concentration on antibacterial activity of the vermiculite nanocomposite; Proceedings of the 8th International Conference on Nanomaterials—Research and Application (NANOCON); Brno, Czech Republic. 19–21 October 2016; pp. 467–472.