Tribo-Mechanical Properties of the Antimicrobial Low-Density Polyethylene (LDPE) Nanocomposite with Hybrid ZnO-Vermiculite-Chlorhexidine Nanofillers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33260967
PubMed Central
PMC7760309
DOI
10.3390/polym12122811
PII: polym12122811
Knihovny.cz E-zdroje
- Klíčová slova
- LDPE nanocomposites, antimicrobial hybrid nanofillers, structural phase characterization, tribo-mechanical properties, wear resistance,
- Publikační typ
- časopisecké články MeSH
Materials made from low-density polyethylene (LDPE) in the form of packages or catheters are currently commonly applied medical devices. Antimicrobial LDPE nanocomposite materials with two types of nanofillers, zinc oxide/vermiculite (ZnO/V) and zinc oxide/vermiculite_chlorhexidine (ZnO/V_CH), were prepared by a melt-compounded procedure to enrich their controllable antimicrobial, microstructural, topographical and tribo-mechanical properties. X-ray diffraction (XRD) analysis and Fourier transform infrared spectroscopy (FTIR) revealed that the ZnO/V and ZnO/V_CH nanofillers and LDPE interacted well with each other. The influence of the nanofiller concentrations on the LDPE nanocomposite surface changes was studied through scanning electron microscopy (SEM), and the surface topology and roughness were studied using atomic force microscopy (AFM). The effect of the ZnO/V nanofiller on the increase in indentation hardness (HIT) was evaluated by AFM measurements and the Vickers microhardness (HV), which showed that as the concentration of the ZnO/V nanofiller increased, these values decreased. The ZnO/V and ZnO/V_CH nanofillers, regardless of the concentration in the LDPE matrix, slightly increased the average values of the friction coefficient (COF). The abrasion depths of the wear indicated that the LDPE_ZnO/V nanocomposite plates exhibited better wear resistance than LDPE_ZnO/V_CH. Higher HV and HIT microhardness values were measured for both nanofillers than the natural LDPE nanocomposite plate. Very positive antimicrobial activity against S. aureus and P. aeruginosa after 72 h was found for both nanofiller types.
Zobrazit více v PubMed
Thomé I.P.S., Dagostin V.S., Piletti R., Pich C.T., Riella H.G., Angioletto E., Fiori M.A. Bactericidal Low Density Polyethylene (LDPE) urinary catheters: Microbiological characterization and effectiveness. Mater. Sci. Eng. C. 2012;32:263–268. doi: 10.1016/j.msec.2011.10.027. DOI
Ramkumar M.C., Pandiyaraj K.N., Kumar A., Padmanabhan P.V.A., Kumar U.S., Gopinath P., Deshmukh R.R. Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: Influence of various gaseous plasma pretreatment. Appl. Surf. Sci. 2018;439:991–998. doi: 10.1016/j.apsusc.2018.01.096. DOI
Kumar Sen S., Raut S. Microbial degradation of low density polyethylene (LDPE): A review. J. Environ. Chem. 2015;3:462–473. doi: 10.1016/j.jece.2015.01.003. DOI
Jacobs T., Morent R., De Geyter N., Dubruel P., Leys C. Plasma surface modification of biomedical polymers: Influence on cell-material interaction. Plasma Chem. Plasma Process. 2012;32:1039–1073. doi: 10.1007/s11090-012-9394-8. DOI
Tajima S., Komvopoulos K. Dependence of nanomechanical modification of polymers on plasma-induced cross-linking. J. Appl. Phys. 2007;101:014307. doi: 10.1063/1.2402033. DOI
Shan B., Yan H., Shen J., Lin S. Ozone-induced grafting of a sulfoammonium zwitterionic polymer onto low-density polyethylene film for improving hemocompatibility. J. Appl. 2006;101:3697–3703. doi: 10.1002/app.20860. DOI
Kang E.T., Neoh K.G., Shi J.L., Tan K.L., Liaw D.J. Surface Modification of Polymers for Adhesion Enhancement. Polym. Adv. Technol. 1999;10:20–29. doi: 10.1002/(SICI)1099-1581(199901/02)10:1/2<20::AID-PAT761>3.0.CO;2-C. DOI
Friedrich K. Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 2018;1:3–39. doi: 10.1016/j.aiepr.2018.05.001. DOI
Akinci A., Yilmaz S., Sen U. Wear Behavior of Basalt Filled Low Density Polyethylene Composites. Appl. Compos. Mater. 2011;19:499–511. doi: 10.1007/s10443-011-9208-9. DOI
Čech Barabaszová K., Holešová S., Hundáková M., Pazdziora E., Ritz M. Antibacterial LDPE Nanocomposites Based on Zinc Oxide Nanoparticles/Vermiculite Nanofiller. J. Inorg. Organomet. Polym. Mater. 2017;27:986–995. doi: 10.1007/s10904-017-0546-4. DOI
Brostow W., Datashvili T., Huang B. Tribological Properties of Blends of Melamine-Formaldehyde Resin With Low Density Polyethylene. Polym. Eng. Sci. 2008;48:292–296. doi: 10.1002/pen.20898. DOI
Fornes T.D., Paul D.R. Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer. 2003;44:4993–5013. doi: 10.1016/S0032-3861(03)00471-3. DOI
Silvano J.d.R., Santa R.A.A.B., Martins M.A.P.M., Riella H.G., Soares C., Fiori M.A. Nanocomposite of erucamide-clay applied for the control of friction coefficient in surfaces of LLDPE. Polym. Test. 2018;67:1–6. doi: 10.1016/j.polymertesting.2018.02.013. DOI
Minkova L., Peneva Y., Valcheva M., Filippi S., Pracella M., Anguillesi I., Magagnini P. Morphology, microhardness, and flammability of compatibilized polyethylene/clay nanocomposites. Polym. Eng. Sci. 2010;50:1306–1314. doi: 10.1002/pen.21659. DOI
Datta D., Samanta S., Halder G. Surface functionalization of extracted nanosilica from rice husk for augmenting mechanical and optical properties of synthesized LDPE-Starch biodegradable film. Polym. Test. 2019;77:105878. doi: 10.1016/j.polymertesting.2019.04.025. DOI
Reesha K.V., Panda S.K., Bindu J., Varghese T.O. Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage. Int. J. Biol. Macromol. 2015;79:934–942. doi: 10.1016/j.ijbiomac.2015.06.016. PubMed DOI
El-Sayed M.H.A., EiD A.I., El-Sheikh M., Ali W.Y. Effect of Graphene Nanoplatelets and Paraffin Oil Addition on the Mechanical and Tribological Properties of Low-Density Polyethylene Nanocomposites. Arab. J. Sci. Eng. 2018;43:1435–1443.
Goyal M., Goyal N., Kaur H., Gera A., Minocha K., Jindal P. Fabrication and characterisation of low density polyethylene (LDPE)/multi walled carbon nanotubes (MWCNTs) nano-composites. Perspect. Sci. 2016;8:403–405. doi: 10.1016/j.pisc.2016.04.089. DOI
Majeed K., AlMaadeed A.A.M., Zagho M.M. Comparison of the effect of carbon, halloysite and titania nanotubes on the mechanical and thermal properties of LDPE based nanocomposite films. Chin. J. Chem. Eng. 2018;26:428–435. doi: 10.1016/j.cjche.2017.09.017. DOI
Tofa T.S., Kunjali K.L., Paul S., Dutta J. Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environ. Chem. Lett. 2019;17:1341–1346. doi: 10.1007/s10311-019-00859-z. DOI
Čech Barabaszová K., Holešová S., Šulcová K., Hundáková M., Thomasová B. Effects of Ultrasound on Zinc Oxide/Vermiculite/Chlorhexidine Nanocomposite Preparation and Their Antibacterial Activity. Nanomaterials. 2019;9:1309. doi: 10.3390/nano9091309. PubMed DOI PMC
Holešová S., Štembírek J., Bartošová L., Pražanová G., Valášková M., Samlíková M., Pazdziora E. Antibacterial eficiency of vermiculite/chlorhexidine nanocomposites and results of the in vivo test of harmlessness of vermiculite. Mater. Sci. Eng. C. 2014;42:466–473. doi: 10.1016/j.msec.2014.05.054. PubMed DOI
Scherrer P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachr. Ges. Wiss. Gott. 1918;2:98–100.
Farmer V.C. In: The Infrared Spectra of Minerals. Farmer V.C., editor. The Mineralogical Society; London, UK: 1974.
Kajbafvala A., Zanganeh S., Kajbafvala E., Zargar H.R., Bayati M.R., Sadrnezhaad S.K. Microwave-assisted synthesis of narcis-like zinc oxide nanostructures. J. Alloys Compd. 2010;497:325–329. doi: 10.1016/j.jallcom.2010.03.057. DOI
Socrates G. Infrared and Raman Characteristic Group Frequencies, Tables and Charts. 3rd ed. John Wiley & Sons Inc.; Chichester, UK: 2001.
Holešová S., Reli M., Hundáková M., Čech Barabaszová K., Ritz M., Plevová E., Pazdziora E. Synthesis and Antimicrobial Activity of Polyethylene/Chlorhexidine/Vermiculite Nanocomposites. J. Nanosci. Nanotechnol. 2019;19:2925–2933. doi: 10.1166/jnn.2019.15850. PubMed DOI
Das-Gupta D.K. Polyethylene: Structure, Morphology, Molecular Motion and Dielectric Property Behavior. IEEE Electr. Insul. Mag. 1994;10:5–15. doi: 10.1109/57.285418. DOI
Gulmine J.V., Janissek P.R., Heise H.M., Akcelrud L. Polyethylene characterization by FTIR. Polym. Test. 2002;21:557–563. doi: 10.1016/S0142-9418(01)00124-6. DOI
Hamzah M., Khenfouch M., Rjeb A., Sayouri S., Houssaini D.S., Darhouri M., Srinivasu V.V. Surface chemistry changes and microstructure evaluation of low density nanocluster polyethylene under natural weathering: A spectroscopic investigation. J. Phys. Conf. Ser. 2018;984:012010. doi: 10.1088/1742-6596/984/1/012010. DOI
Čech Barabaszová K., Holešová S., Šulcová K., Ritz M., Kupková J. Hybrid Antibacterial Nanocomposites Based on the Vermiculite/Zinc Oxide-Chlorhexidine. J. Nanosci. Nanotechnol. 2019;19:3041–3048. doi: 10.1166/jnn.2019.15844. PubMed DOI
Xanthos M. Functional Fillers for Plastics. Wiley Online Library; Weinheim, Germany: 2005. Modification of Polymer Mechanical and Rheological Properties with Functional Fillers; pp. 17–38.