• This record comes from PubMed

Development of Novel Thin Polycaprolactone (PCL)/Clay Nanocomposite Films with Antimicrobial Activity Promoted by the Study of Mechanical, Thermal, and Surface Properties

. 2021 Sep 21 ; 13 (18) : . [epub] 20210921

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
No. SP2020/08 - Hybrid clay nanofillers for antimicrobial polymer films Ministerstvo Školství, Mládeže a Tělovýchovy
No. SP2021/106 - Study and development of composite nanomaterials and nanofillers Ministerstvo Školství, Mládeže a Tělovýchovy

Infection with pathogenic microorganisms is of great concern in many areas, especially in healthcare, but also in food packaging and storage, or in water purification systems. Antimicrobial polymer nanocomposites have gained great popularity in these areas. Therefore, this study focused on new approaches to develop thin antimicrobial films based on biodegradable polycaprolactone (PCL) with clay mineral natural vermiculite as a carrier for antimicrobial compounds, where the active organic antimicrobial component is antifungal ciclopirox olamine (CPX). For possible synergistic effects, a sample in combination with the inorganic antimicrobial active ingredient zinc oxide was also prepared. The structures of all the prepared samples were studied by X-ray diffraction, FTIR analysis and, predominantly, by SEM. The very different structure properties of the prepared nanofillers had a fundamental influence on the final structural arrangement of thin PCL nanocomposite films as well as on their mechanical, thermal, and surface properties. As sample PCL/ZnOVER_CPX possessed the best results for antimicrobial activity against examined microbial strains, the synergic effect of CPX and ZnO combination on antimicrobial activity was proved, but on the other hand, its mechanical resistance was the lowest.

See more in PubMed

Woodruff M.A., Hutmacher D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010;35:1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002. DOI

Coombes A.G.A., Rizzi S.C., Williamson M., Barralet J.E., Downes S., Wallace W.A. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials. 2004;25:315–325. doi: 10.1016/S0142-9612(03)00535-0. PubMed DOI

Fatih Canbolat M., Celebioglu A., Uyar T. Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloid. Surf. B. 2014;115:15–21. doi: 10.1016/j.colsurfb.2013.11.021. PubMed DOI

Schlesinger E., Ciaccio N., Desai T.A. Polycaprolactone thin-film drug delivery systems: Empirical and predictive models for device design. Mater. Sci. Eng.: C. 2015;57:232–239. doi: 10.1016/j.msec.2015.07.027. PubMed DOI PMC

Chang S.H., Lee H.J., Park S., KIM Y., Jeong B. Fast Degradable Polycaprolactone for Drug Delivery. Biomacromolecules. 2018;19:2302–2307. doi: 10.1021/acs.biomac.8b00266. PubMed DOI

Ng K.W., Achuth H.N., Moochhala S., Lim T.C., Hutmacher D.W. In vivo evaluation of an ultra-thin polycaprolactone film as a wound dressing. J. Biomater. Sci.–Polym. E. 2012;18:925–938. doi: 10.1163/156856207781367693. PubMed DOI

Thomas R., Soumya K.R., MATHEW J., Radhakrishnan E.K. Electrospun Polycaprolactone Membrane Incorporated with Biosynthesized Silver Nanoparticles as Effective Wound Dressing Material. Appl. Biochem. Biotechnol. 2015;176:2213–2224. doi: 10.1007/s12010-015-1709-9. PubMed DOI

Muwaffak Z., Goyanes A., Clark V., Basit A.W., Hilton S.T., Gaisford S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int. J. Pharm. 2017;527:161–170. doi: 10.1016/j.ijpharm.2017.04.077. PubMed DOI

Bou-Francis A., Piercey M., Al-Qatami O., Mazzanti G., Khattab R., Ghanem A. Polycaprolactone blends for fracture fixation in low load-bearing applications. J. Appl. Polym. Sci. 2020;137:48940. doi: 10.1002/app.48940. DOI

Park J., Lee S.J., Jo H.H., Lee J.H., Kim W.D., Lee J.Y., Park S.A. Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering. J. Ind. Eng. Chem. 2017;46:175–181. doi: 10.1016/j.jiec.2016.10.028. DOI

Ho C.-C., Fang H.-Y., Wang B., Huang T.-H., Shie M.-Y. The effects of Biodentine/polycaprolactone three-dimensional-scaffold with odontogenesis properties on human dental pulp cells. Int. Endod. J. 2018;51:e291–e300. doi: 10.1111/iej.12799. PubMed DOI

Kweon H. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 2003;24:801–808. doi: 10.1016/S0142-9612(02)00370-8. PubMed DOI

Dai N.-T., Williamson M.R., Khammo N., Adams E.F., Coombes A.G.A. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials. 2004;25:4263–4271. doi: 10.1016/j.biomaterials.2003.11.022. PubMed DOI

Williams J.M., Adewunmi A., Schek R.M., Flanagan C.L., Krebsbach P.H., Feinberg S.E., Hollister S.J., Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26:4817–4827. doi: 10.1016/j.biomaterials.2004.11.057. PubMed DOI

Pan L., Pei X., He R., Wan Q., Wang J. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloid. Surf. B. 2012;93:226–234. doi: 10.1016/j.colsurfb.2012.01.011. PubMed DOI

Yeong W.Y., Sudarmadji N., Yu H.Y., Chua C.K., Leong K.F., Venkatraman S.S., Boey Y.C.F., Tan L.P. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6:2028–2034. doi: 10.1016/j.actbio.2009.12.033. PubMed DOI

Patra S., Remy M., Ray A.L., Brouillaud B., Amedee J., Gupta B., Bordenave L. A Novel Route to Polycaprolactone Scaffold for Vascular Tissue Engineering. J. Biomater. Tiss. Eng. 2013;3:289–299. doi: 10.1166/jbt.2013.1087. DOI

Choi I., Yoo D.S., Chang Y., Kim S.Y., Han J. Polycaprolactone film functionalized with bacteriophage T4 promotes antibacterial activity of food packaging toward Escherichia coli. Food Chem. 2021;346:128883. doi: 10.1016/j.foodchem.2020.128883. PubMed DOI

Piri H., Moradi S., Amiri R. The fabrication of a novel film based on polycaprolactone incorporated with chitosan and rutin: Potential as an antibacterial carrier for rainbow trout packaging. Food Sci. Biotechnol. 2021;30:683–690. doi: 10.1007/s10068-021-00898-9. PubMed DOI PMC

Khalid S., Yu L., Feng M., Meng L., Bai Y., Ali A., Liu H., Chen L. Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packag. Shelf Life. 2018;18:71–79. doi: 10.1016/j.fpsl.2018.08.008. DOI

Hernández-García E., Vargas M., González-Martínez C., Chiralt A. Biodegradable Antimicrobial Films for Food Packaging: Effect of Antimicrobials on Degradation. Foods. 2021;10:1256. doi: 10.3390/foods10061256. PubMed DOI PMC

Njuguna J., Pielichowski K., Desai S. Nanofiller-reinforced polymer nanocomposites. Polym. Adv. Technol. 2008;19:947–959. doi: 10.1002/pat.1074. DOI

Dantas De Oliveira A., Augusto Gonçalves Beatrice C. Polymer Nanocomposites with Different Types of Nanofiller. In: Sivasankaran S., editor. Nanocomposites—Recent Evolutions. 1st ed. Volume 2019. IntechOpen; London, UK: 2019. pp. 1–23.

Crosby A.J., Lee J.-Y. Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polym. Rev. 2007;47:217–229. doi: 10.1080/15583720701271278. DOI

Šupová M., Simha Martynková G., Barabaszová K. Effect of Nanofillers Dispersion in Polymer Matrices: A Review. Sci. Adv. Mater. 2011;3:1–25. doi: 10.1166/sam.2011.1136. DOI

Okada A., Usuki A. Twenty Years of Polymer-Clay Nanocomposites. Macromol. Mater. Eng. 2006;291:1449–1476. doi: 10.1002/mame.200600260. DOI

Salam H., Dong Y., Davies I. Development of biobased polymer/clay nanocomposites. In: Dong Y., Umer R., Kin-Tak Lau A., editors. Fillers and Reinforcements for Advanced Nanocomposites. 1st ed. Volume 2015. Woodhead Publishing, Elsevier; Cambridge, UK: 2015. pp. 101–132.

Mallakpour S., Rashidimoghadam S. Recent developments in the synthesis of hybrid polymer/clay nanocomposites. In: Thakur K.V., Thakur M.K., Pappu A., editors. Hybrid Polymer Composite Materials. 1st ed. Volume 2017. Woodhead Publishing, Elsevier; Cambridge, UK: 2017. pp. 227–265.

Muñoz-Bonilla A., Fernández-García M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012;37:281–339. doi: 10.1016/j.progpolymsci.2011.08.005. DOI

Babu S.S., Mathew S., Kalarikkal N., Thomas S., Radhakrishnan E.K. Antimicrobial, antibiofilm, and microbial barrier properties of poly (ε-caprolactone)/cloisite 30B thin films. 3 Biotech. 2016;6:249. doi: 10.1007/s13205-016-0559-7. PubMed DOI PMC

Babu S.S., Kalarikkal N., Thomas S., Radhakrishnan E.K. Enhanced antimicrobial performance of cloisite 30B/poly (ε-caprolactone) over cloisite 30B/poly (L-lactic acid) as evidenced by structural features. Appl. Clay Sci. 2018;153:198–204. doi: 10.1016/j.clay.2017.12.003. DOI

Cesur S., Köroğlu C., Yalçin H.T. Antimicrobial and biodegradable food packaging applications of polycaprolactone/organo nanoclay/chitosan polymeric composite films. J. Vinyl Addit. Technol. 2018;24:376–387. doi: 10.1002/vnl.21607. DOI

Yahiaoui F., Benhacine F., Ferfera-Harrar H., Habi A., Hadj-Hamou A.S., Grohens Y. Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polym. Bull. 2015;72:235–254. doi: 10.1007/s00289-014-1269-0. DOI

Holešová S., Čech Barabaszová K., Hundáková M., Plevová E., Kalendová A. Novel LDPE /vermiculite/ciclopiroxolamine hybrid nanocomposites: Structure, surface properties, and antifungal activity. J. Appl. Polym. Sci. 2021;138:50232. doi: 10.1002/app.50232. DOI

Čech Barabaszová K., Holešová S., Hundáková M., Kalendová A. Tribo-Mechanical Properties of the Antimicrobial Low-Density Polyethylene (LDPE) Nanocomposite with Hybrid ZnO–Vermiculite–Chlorhexidine Nanofillers. Polymers. 2020;12:2811. doi: 10.3390/polym12122811. PubMed DOI PMC

Čech Barabaszová K., Holešová S., Hundáková M., Mohyla V. Vermiculite in polycaprolactone films prepared with the used of ultrasound. Mater. Today-Proc. 2021;37:13–20. doi: 10.1016/j.matpr.2020.02.099. DOI

Holešová S., Reli M., Hundáková M., Čech Barabaszová K., Ritz M., Plevová E., Pazdziora E. Synthesis and Antimicrobial Activity of Polyethylene/Chlorhexidine/Vermiculite Nanocomposites. J. Nanosci. Nanotechnol. 2019;19:2925–2933. doi: 10.1166/jnn.2019.15850. PubMed DOI

Yam W.Y., Ismail J., Kammer H.W., SCHMIDT H., Kummerlöwe C. Polymer blends of poly(ϵ-caprolactone) and poly(vinyl methyl ether) – thermal properties and morphology. Polymer. 1999;40:5545–5552. doi: 10.1016/S0032-3861(98)00807-6. DOI

Kneiflová J. Hodnocení baktericidní účinnosti dezinfekčních prostředků suspenzní mikrometodou. Čs. Epidemiol. Mikrobiol. Imunol. 1988;37:97–104. PubMed

Marcos C., Arango Y.C., Rodriguez I. X-ray diffraction studies of the thermal behaviour of commercial vermiculites. Appl. Clay Sci. 2009;42:368–378. doi: 10.1016/j.clay.2008.03.004. DOI

Sani H.A., Ahmad M.B., Hussein M.Z., Ibrahim N.A., Musa A., Saleh T.A. Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process Saf. Environ. Protect. 2007;109:97–105. doi: 10.1016/j.psep.2017.03.024. DOI

Tarawneh R.T., Hamdan I.I., Bani-Jaber A., Darwish R.M. Physicochemical studies on ciclopirox olamine complexes with divalent metal ions. Int. J. Pharm. 2005;289:179–187. doi: 10.1016/j.ijpharm.2004.11.009. PubMed DOI

Renou L., Coste S., Cartigny Y., Petit M.N., Vincent C., Schneider J.M., Coquerel G. Mechanism of hydration and dehydration of ciclopirox ethanolamine (1:1) Cryst. Growth Des. 2009;9:3918–3927. doi: 10.1021/cg8013877. DOI

Fadaie M., Mirzaei E. Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behaviour. Nanomed. J. 2018;5:77–89.

Ciardelli G., Chiono V., Vozzi G., Pracella M., Ahluwalia A., Barbani N., Cristallini C., Giusti P. Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules. 2005;6:1961–1976. doi: 10.1021/bm0500805. PubMed DOI

Farmer V.C. The Layer Silicates. In: Farmer V.C., editor. The Infrared Spectra of Minerals. 1st ed. Volume 4. The Mineralogical Society of Great Britain and Ireland; London, UK: 1974. pp. 331–364.

Silverstein R.M., Basser G.C., Morrill T. Infrared Spectrometry. In: Silverstein R.M., Basser G.C., Morrill T., editors. Spectrometric identification of organic compounds. 2nd ed. John Wiley & Sons Inc.; New York, NY, USA: 1991. pp. 72–126.

Socrates G. Infrared and Raman Characteristic Group Frequencies, Tables and Charts. 3rd ed. John Wiley & Sons Inc.; Chichester, UK: 2001. p. 364.

Elzein T., Nasser-Eddine M., Delaite C., Bistac S., Dumas P. FTIR study of polycaprolactone chain organization at interfaces. J. Colloid Interface Sci. 2004;273:381–387. doi: 10.1016/j.jcis.2004.02.001. PubMed DOI

Čech Barabaszová K., Valášková M. Characterization of vermiculite particles after different milling techniques. Powder Technol. 2013;239:277–283. doi: 10.1016/j.powtec.2013.01.053. DOI

Crist B., Schultz J.M. Polymer spherulites: A critical review. Prog. Polym. Sci. 2016;56:1–63. doi: 10.1016/j.progpolymsci.2015.11.006. DOI

Ludueña L.N., Vazquez A., Alvarez V.A. Crystallization of polycaprolactone–clay nanocomposites. J. Appl. Polym. Sci. 2008;109:3148–3156. doi: 10.1002/app.28266. DOI

Mallakpour S., Nouruzi N. Effects of citric acid-functionalized ZnO nanoparticles on the structural, mechanical, thermal and optical properties of polycaprolactone nanocomposite films. Mater. Chem. Phys. 2017;197:129–137. doi: 10.1016/j.matchemphys.2017.05.023. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...