Development of Novel Thin Polycaprolactone (PCL)/Clay Nanocomposite Films with Antimicrobial Activity Promoted by the Study of Mechanical, Thermal, and Surface Properties
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
No. SP2020/08 - Hybrid clay nanofillers for antimicrobial polymer films
Ministerstvo Školství, Mládeže a Tělovýchovy
No. SP2021/106 - Study and development of composite nanomaterials and nanofillers
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34578094
PubMed Central
PMC8470023
DOI
10.3390/polym13183193
PII: polym13183193
Knihovny.cz E-resources
- Keywords
- antimicrobial activity, nanocomposites, polycaprolactone, thin films, vermiculite,
- Publication type
- Journal Article MeSH
Infection with pathogenic microorganisms is of great concern in many areas, especially in healthcare, but also in food packaging and storage, or in water purification systems. Antimicrobial polymer nanocomposites have gained great popularity in these areas. Therefore, this study focused on new approaches to develop thin antimicrobial films based on biodegradable polycaprolactone (PCL) with clay mineral natural vermiculite as a carrier for antimicrobial compounds, where the active organic antimicrobial component is antifungal ciclopirox olamine (CPX). For possible synergistic effects, a sample in combination with the inorganic antimicrobial active ingredient zinc oxide was also prepared. The structures of all the prepared samples were studied by X-ray diffraction, FTIR analysis and, predominantly, by SEM. The very different structure properties of the prepared nanofillers had a fundamental influence on the final structural arrangement of thin PCL nanocomposite films as well as on their mechanical, thermal, and surface properties. As sample PCL/ZnOVER_CPX possessed the best results for antimicrobial activity against examined microbial strains, the synergic effect of CPX and ZnO combination on antimicrobial activity was proved, but on the other hand, its mechanical resistance was the lowest.
See more in PubMed
Woodruff M.A., Hutmacher D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010;35:1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002. DOI
Coombes A.G.A., Rizzi S.C., Williamson M., Barralet J.E., Downes S., Wallace W.A. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials. 2004;25:315–325. doi: 10.1016/S0142-9612(03)00535-0. PubMed DOI
Fatih Canbolat M., Celebioglu A., Uyar T. Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloid. Surf. B. 2014;115:15–21. doi: 10.1016/j.colsurfb.2013.11.021. PubMed DOI
Schlesinger E., Ciaccio N., Desai T.A. Polycaprolactone thin-film drug delivery systems: Empirical and predictive models for device design. Mater. Sci. Eng.: C. 2015;57:232–239. doi: 10.1016/j.msec.2015.07.027. PubMed DOI PMC
Chang S.H., Lee H.J., Park S., KIM Y., Jeong B. Fast Degradable Polycaprolactone for Drug Delivery. Biomacromolecules. 2018;19:2302–2307. doi: 10.1021/acs.biomac.8b00266. PubMed DOI
Ng K.W., Achuth H.N., Moochhala S., Lim T.C., Hutmacher D.W. In vivo evaluation of an ultra-thin polycaprolactone film as a wound dressing. J. Biomater. Sci.–Polym. E. 2012;18:925–938. doi: 10.1163/156856207781367693. PubMed DOI
Thomas R., Soumya K.R., MATHEW J., Radhakrishnan E.K. Electrospun Polycaprolactone Membrane Incorporated with Biosynthesized Silver Nanoparticles as Effective Wound Dressing Material. Appl. Biochem. Biotechnol. 2015;176:2213–2224. doi: 10.1007/s12010-015-1709-9. PubMed DOI
Muwaffak Z., Goyanes A., Clark V., Basit A.W., Hilton S.T., Gaisford S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int. J. Pharm. 2017;527:161–170. doi: 10.1016/j.ijpharm.2017.04.077. PubMed DOI
Bou-Francis A., Piercey M., Al-Qatami O., Mazzanti G., Khattab R., Ghanem A. Polycaprolactone blends for fracture fixation in low load-bearing applications. J. Appl. Polym. Sci. 2020;137:48940. doi: 10.1002/app.48940. DOI
Park J., Lee S.J., Jo H.H., Lee J.H., Kim W.D., Lee J.Y., Park S.A. Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering. J. Ind. Eng. Chem. 2017;46:175–181. doi: 10.1016/j.jiec.2016.10.028. DOI
Ho C.-C., Fang H.-Y., Wang B., Huang T.-H., Shie M.-Y. The effects of Biodentine/polycaprolactone three-dimensional-scaffold with odontogenesis properties on human dental pulp cells. Int. Endod. J. 2018;51:e291–e300. doi: 10.1111/iej.12799. PubMed DOI
Kweon H. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 2003;24:801–808. doi: 10.1016/S0142-9612(02)00370-8. PubMed DOI
Dai N.-T., Williamson M.R., Khammo N., Adams E.F., Coombes A.G.A. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials. 2004;25:4263–4271. doi: 10.1016/j.biomaterials.2003.11.022. PubMed DOI
Williams J.M., Adewunmi A., Schek R.M., Flanagan C.L., Krebsbach P.H., Feinberg S.E., Hollister S.J., Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26:4817–4827. doi: 10.1016/j.biomaterials.2004.11.057. PubMed DOI
Pan L., Pei X., He R., Wan Q., Wang J. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloid. Surf. B. 2012;93:226–234. doi: 10.1016/j.colsurfb.2012.01.011. PubMed DOI
Yeong W.Y., Sudarmadji N., Yu H.Y., Chua C.K., Leong K.F., Venkatraman S.S., Boey Y.C.F., Tan L.P. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6:2028–2034. doi: 10.1016/j.actbio.2009.12.033. PubMed DOI
Patra S., Remy M., Ray A.L., Brouillaud B., Amedee J., Gupta B., Bordenave L. A Novel Route to Polycaprolactone Scaffold for Vascular Tissue Engineering. J. Biomater. Tiss. Eng. 2013;3:289–299. doi: 10.1166/jbt.2013.1087. DOI
Choi I., Yoo D.S., Chang Y., Kim S.Y., Han J. Polycaprolactone film functionalized with bacteriophage T4 promotes antibacterial activity of food packaging toward Escherichia coli. Food Chem. 2021;346:128883. doi: 10.1016/j.foodchem.2020.128883. PubMed DOI
Piri H., Moradi S., Amiri R. The fabrication of a novel film based on polycaprolactone incorporated with chitosan and rutin: Potential as an antibacterial carrier for rainbow trout packaging. Food Sci. Biotechnol. 2021;30:683–690. doi: 10.1007/s10068-021-00898-9. PubMed DOI PMC
Khalid S., Yu L., Feng M., Meng L., Bai Y., Ali A., Liu H., Chen L. Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packag. Shelf Life. 2018;18:71–79. doi: 10.1016/j.fpsl.2018.08.008. DOI
Hernández-García E., Vargas M., González-Martínez C., Chiralt A. Biodegradable Antimicrobial Films for Food Packaging: Effect of Antimicrobials on Degradation. Foods. 2021;10:1256. doi: 10.3390/foods10061256. PubMed DOI PMC
Njuguna J., Pielichowski K., Desai S. Nanofiller-reinforced polymer nanocomposites. Polym. Adv. Technol. 2008;19:947–959. doi: 10.1002/pat.1074. DOI
Dantas De Oliveira A., Augusto Gonçalves Beatrice C. Polymer Nanocomposites with Different Types of Nanofiller. In: Sivasankaran S., editor. Nanocomposites—Recent Evolutions. 1st ed. Volume 2019. IntechOpen; London, UK: 2019. pp. 1–23.
Crosby A.J., Lee J.-Y. Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polym. Rev. 2007;47:217–229. doi: 10.1080/15583720701271278. DOI
Šupová M., Simha Martynková G., Barabaszová K. Effect of Nanofillers Dispersion in Polymer Matrices: A Review. Sci. Adv. Mater. 2011;3:1–25. doi: 10.1166/sam.2011.1136. DOI
Okada A., Usuki A. Twenty Years of Polymer-Clay Nanocomposites. Macromol. Mater. Eng. 2006;291:1449–1476. doi: 10.1002/mame.200600260. DOI
Salam H., Dong Y., Davies I. Development of biobased polymer/clay nanocomposites. In: Dong Y., Umer R., Kin-Tak Lau A., editors. Fillers and Reinforcements for Advanced Nanocomposites. 1st ed. Volume 2015. Woodhead Publishing, Elsevier; Cambridge, UK: 2015. pp. 101–132.
Mallakpour S., Rashidimoghadam S. Recent developments in the synthesis of hybrid polymer/clay nanocomposites. In: Thakur K.V., Thakur M.K., Pappu A., editors. Hybrid Polymer Composite Materials. 1st ed. Volume 2017. Woodhead Publishing, Elsevier; Cambridge, UK: 2017. pp. 227–265.
Muñoz-Bonilla A., Fernández-García M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012;37:281–339. doi: 10.1016/j.progpolymsci.2011.08.005. DOI
Babu S.S., Mathew S., Kalarikkal N., Thomas S., Radhakrishnan E.K. Antimicrobial, antibiofilm, and microbial barrier properties of poly (ε-caprolactone)/cloisite 30B thin films. 3 Biotech. 2016;6:249. doi: 10.1007/s13205-016-0559-7. PubMed DOI PMC
Babu S.S., Kalarikkal N., Thomas S., Radhakrishnan E.K. Enhanced antimicrobial performance of cloisite 30B/poly (ε-caprolactone) over cloisite 30B/poly (L-lactic acid) as evidenced by structural features. Appl. Clay Sci. 2018;153:198–204. doi: 10.1016/j.clay.2017.12.003. DOI
Cesur S., Köroğlu C., Yalçin H.T. Antimicrobial and biodegradable food packaging applications of polycaprolactone/organo nanoclay/chitosan polymeric composite films. J. Vinyl Addit. Technol. 2018;24:376–387. doi: 10.1002/vnl.21607. DOI
Yahiaoui F., Benhacine F., Ferfera-Harrar H., Habi A., Hadj-Hamou A.S., Grohens Y. Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polym. Bull. 2015;72:235–254. doi: 10.1007/s00289-014-1269-0. DOI
Holešová S., Čech Barabaszová K., Hundáková M., Plevová E., Kalendová A. Novel LDPE /vermiculite/ciclopiroxolamine hybrid nanocomposites: Structure, surface properties, and antifungal activity. J. Appl. Polym. Sci. 2021;138:50232. doi: 10.1002/app.50232. DOI
Čech Barabaszová K., Holešová S., Hundáková M., Kalendová A. Tribo-Mechanical Properties of the Antimicrobial Low-Density Polyethylene (LDPE) Nanocomposite with Hybrid ZnO–Vermiculite–Chlorhexidine Nanofillers. Polymers. 2020;12:2811. doi: 10.3390/polym12122811. PubMed DOI PMC
Čech Barabaszová K., Holešová S., Hundáková M., Mohyla V. Vermiculite in polycaprolactone films prepared with the used of ultrasound. Mater. Today-Proc. 2021;37:13–20. doi: 10.1016/j.matpr.2020.02.099. DOI
Holešová S., Reli M., Hundáková M., Čech Barabaszová K., Ritz M., Plevová E., Pazdziora E. Synthesis and Antimicrobial Activity of Polyethylene/Chlorhexidine/Vermiculite Nanocomposites. J. Nanosci. Nanotechnol. 2019;19:2925–2933. doi: 10.1166/jnn.2019.15850. PubMed DOI
Yam W.Y., Ismail J., Kammer H.W., SCHMIDT H., Kummerlöwe C. Polymer blends of poly(ϵ-caprolactone) and poly(vinyl methyl ether) – thermal properties and morphology. Polymer. 1999;40:5545–5552. doi: 10.1016/S0032-3861(98)00807-6. DOI
Kneiflová J. Hodnocení baktericidní účinnosti dezinfekčních prostředků suspenzní mikrometodou. Čs. Epidemiol. Mikrobiol. Imunol. 1988;37:97–104. PubMed
Marcos C., Arango Y.C., Rodriguez I. X-ray diffraction studies of the thermal behaviour of commercial vermiculites. Appl. Clay Sci. 2009;42:368–378. doi: 10.1016/j.clay.2008.03.004. DOI
Sani H.A., Ahmad M.B., Hussein M.Z., Ibrahim N.A., Musa A., Saleh T.A. Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process Saf. Environ. Protect. 2007;109:97–105. doi: 10.1016/j.psep.2017.03.024. DOI
Tarawneh R.T., Hamdan I.I., Bani-Jaber A., Darwish R.M. Physicochemical studies on ciclopirox olamine complexes with divalent metal ions. Int. J. Pharm. 2005;289:179–187. doi: 10.1016/j.ijpharm.2004.11.009. PubMed DOI
Renou L., Coste S., Cartigny Y., Petit M.N., Vincent C., Schneider J.M., Coquerel G. Mechanism of hydration and dehydration of ciclopirox ethanolamine (1:1) Cryst. Growth Des. 2009;9:3918–3927. doi: 10.1021/cg8013877. DOI
Fadaie M., Mirzaei E. Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behaviour. Nanomed. J. 2018;5:77–89.
Ciardelli G., Chiono V., Vozzi G., Pracella M., Ahluwalia A., Barbani N., Cristallini C., Giusti P. Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules. 2005;6:1961–1976. doi: 10.1021/bm0500805. PubMed DOI
Farmer V.C. The Layer Silicates. In: Farmer V.C., editor. The Infrared Spectra of Minerals. 1st ed. Volume 4. The Mineralogical Society of Great Britain and Ireland; London, UK: 1974. pp. 331–364.
Silverstein R.M., Basser G.C., Morrill T. Infrared Spectrometry. In: Silverstein R.M., Basser G.C., Morrill T., editors. Spectrometric identification of organic compounds. 2nd ed. John Wiley & Sons Inc.; New York, NY, USA: 1991. pp. 72–126.
Socrates G. Infrared and Raman Characteristic Group Frequencies, Tables and Charts. 3rd ed. John Wiley & Sons Inc.; Chichester, UK: 2001. p. 364.
Elzein T., Nasser-Eddine M., Delaite C., Bistac S., Dumas P. FTIR study of polycaprolactone chain organization at interfaces. J. Colloid Interface Sci. 2004;273:381–387. doi: 10.1016/j.jcis.2004.02.001. PubMed DOI
Čech Barabaszová K., Valášková M. Characterization of vermiculite particles after different milling techniques. Powder Technol. 2013;239:277–283. doi: 10.1016/j.powtec.2013.01.053. DOI
Crist B., Schultz J.M. Polymer spherulites: A critical review. Prog. Polym. Sci. 2016;56:1–63. doi: 10.1016/j.progpolymsci.2015.11.006. DOI
Ludueña L.N., Vazquez A., Alvarez V.A. Crystallization of polycaprolactone–clay nanocomposites. J. Appl. Polym. Sci. 2008;109:3148–3156. doi: 10.1002/app.28266. DOI
Mallakpour S., Nouruzi N. Effects of citric acid-functionalized ZnO nanoparticles on the structural, mechanical, thermal and optical properties of polycaprolactone nanocomposite films. Mater. Chem. Phys. 2017;197:129–137. doi: 10.1016/j.matchemphys.2017.05.023. DOI