Hybrid Nanofillers Creating the Stable PVDF Nanocomposite Films and Their Effect on the Friction and Mechanical Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36145976
PubMed Central
PMC9506190
DOI
10.3390/polym14183831
PII: polym14183831
Knihovny.cz E-zdroje
- Klíčová slova
- PVDF nanocomposite films, Zeta-potential values, chlorhexidine, correlative imaging, friction and mechanical properties, nanofillers, surface roundness, vermiculite, zinc oxide,
- Publikační typ
- časopisecké články MeSH
The solvent casting method was used for five types of polyvinylidene difluoride (PVDF) nanocomposite film preparation. The effect of nanofillers in PVDF nanocomposite films on the structural, phase, and friction and mechanical properties was examined and compared with that of the natural PVDF film. The surface topography of PVDF nanocomposite films was investigated using a scanning electron microscope (SEM) and correlative imaging (CPEM, combinate AFM and SEM). A selection of 2D CPEM images was used for a detailed study of the spherulitic morphologies (grains size around 6-10 μm) and surface roughness (value of 50-68 nm). The chemical interactions were evaluated by Fourier transform infrared spectroscopy (FTIR). Dominant polar γ-phase in the original PVDF, PVDF_ZnO and PVDF_ZnO/V, the most stable non-polar α-phase in the PVDF_V_CH nanocomposite film and mixture of γ and α phases in the PVDF_V and PVDF_ZnO/V_CH nanocomposite films were confirmed. Moderately hydrophilic PVDF nanocomposite films with water contact angle values (WCA) in the range of 58°-69° showed surface stability with respect to the Zeta potential values. The effect of positive or negative Zeta-potential values of nanofillers (ζn) on the resulting negative Zeta-potential values (ζ) of PVDF nanocomposite films was demonstrated. Interaction of PVDF chains with hydroxy groups of vermiculite and amino and imino groups of CH caused transformation of γ-phase to α. The friction properties were evaluated based on the wear testing and mechanical properties were evaluated from the tensile tests based on Young's modulus (E) and tensile strength (Rm) values. Used nanofillers caused decreasing of friction and mechanical properties of PVDF nanocomposite material films.
CENAB Faculty of Science J E Purkyně University Pasteurova 15 400 96 Ústí nad Labem Czech Republic
Department of Biomechatronics Silesian University of Technology Roosevelta 40 41 800 Zabrze Poland
Zobrazit více v PubMed
Otto G.P., Moisés M.P., Carvalho G., Rinaldi A.W., Garcia J.C., Radovanovic E., Fávaro S.L. Mechanical properties of a polyurethane hybrid composite with natural lignocellulosic fibers. Compos. B Eng. 2017;110:459–465. doi: 10.1016/j.compositesb.2016.11.035. DOI
Orooji Y., Jaleh B., Homayouni F., Fakhri P., Kashfi M., Torkamany M.J., Yousefi A.A. Laser Ablation-Assisted Synthesis of Poly (Vinylidene Fluoride)/Au Nanocomposites: Crystalline Phase and Micromechanical Finite Element Analysis. Polymers. 2020;12:2630. doi: 10.3390/polym12112630. PubMed DOI PMC
Barrau S., Ferri A., Da Costa A., Defebvin J., Leroy S., Desfeux R., Lefebvre J.-M. Nanoscale Investigations of α- and γ-Crystal Phases in PVDF-Based Nanocomposites. ACS Appl. Mater. Interfaces. 2018;10:13092–13099. doi: 10.1021/acsami.8b02172. PubMed DOI
Tarfaoui M., Lafdi K., El Moumen A. Mechanical properties of carbon nanotubes based polymer composites. Compos. B Eng. 2016;103:113–121. doi: 10.1016/j.compositesb.2016.08.016. DOI
Suresh G., Mallikarjunachari G., Jatav S., Thirmal C., Ramachandra Rao M.S., Satapathy D.K. Evolution of morphology, ferroelectric, and mechanical properties in poly(vinylidene fluoride)-poly(vinylidene fluoride-trifluoroethylene) blends. J. Appl. Polym. Sci. 2017;135:45955. doi: 10.1002/app.45955. DOI
Indolia A.P., Gaur M.S. Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. J. Therm. Anal. Calorim. 2012;113:821–830. doi: 10.1007/s10973-012-2834-0. DOI
Horibe H., Sasaki Y., Oshiro H., Hosokawa Y., Kono A., Takahashi S., Nishiyama T. Quantification of the solvent evaporation rate during the production of three PVDF crystalline structure types by solvent casting. Polym. J. 2013;46:104–110. doi: 10.1038/pj.2013.75. DOI
Li L., Zhang M., Rong M., Ruan W. Studies on the transformation process of PVDF from α to β phase by stretching. RSC Adv. 2014;4:3938–3943. doi: 10.1039/C3RA45134H. DOI
Muñoz-Bonilla A., Kubacka A., Fernández-García M., Ferrer M., Fernández-García M., Cerrada M.L. Visible and ultraviolet antibacterial behavior in PVDF–TiO 2 nanocomposite films. Eur. Polym. J. 2015;71:412–422. doi: 10.1016/j.eurpolymj.2015.08.020. DOI
Jian L., Chilan C. The Preparation and Tribological Properties of PVDF/TiO2Nanocomposites. Polym. Plast. Technol. Eng. 2010;49:643–647. doi: 10.1080/03602551003664636. DOI
Liao C.J., Zhao J.Q., Yu P., Tong H., Luo Y.B. Synthesis and characterization of low content of different SiO2 materials composite poly (vinylidene fluoride) ultrafiltration membranes. Desalination. 2012;285:117–122. doi: 10.1016/j.desal.2011.09.042. DOI
Song S., Xia S., Liu Y., Lv X., Sun S. Effect of Na+ MMT-ionic liquid synergy on electroactive, mechanical, dielectric and energy storage properties of transparent PVDF-based nanocomposites. Chem. Eng. J. 2020;384:123365. doi: 10.1016/j.cej.2019.123365. DOI
Mokhtar N.M., Lau W.J., Ismail A.F., Ng B.C. Physicochemical study of polyvinylidene fluoride-Cloisite15A® composite membranes for membrane distillation application. RSC Adv. 2014;4:63367–63379. doi: 10.1039/C4RA10289D. DOI
Peng Q.-Y., Cong P.-H., Liu X.-J., Liu T.-X., Huang S., Li T.-S. The preparation of PVDF/clay nanocomposites and the investigation of their tribological properties. Wear. 2009;266:713–720. doi: 10.1016/j.wear.2008.08.010. DOI
Wang W., Wang A. Nanomaterials from Clay Minerals. Elsevier; Amsterdam, The Netherlands: 2019. Vermiculite Nanomaterials: Structure, Properties, and Potential Applications; pp. 415–484.
Čech Barabaszová K., Holešová S., Šulcová K., Hundáková M., Thomasová B. Effects of Ultrasound on Zinc Oxide/Vermiculite/Chlorhexidine Nanocomposite Preparation and Their Antibacterial Activity. Nanomaterials. 2019;9:1309. doi: 10.3390/nano9091309. PubMed DOI PMC
Čech Barabaszová K., Holešová S., Šulcová K., Ritz M., Kupková J. Hybrid Antibacterial Nanocomposites Based on the Vermiculite/Zinc Oxide-Chlorhexidine. J. Nanosci. Nanotechnol. 2019;19:3041–3048. doi: 10.1166/jnn.2019.15844. PubMed DOI
Fuks L., Herdzik-Koniecko I. Vermiculite as a potential component of the engineered barriers in low- and medium-level radioactive waste repositories. Appl. Clay Sci. 2018;161:139–150. doi: 10.1016/j.clay.2018.04.010. DOI
Kolská Z., Řezníčková A., Nagyová M., Slepičková Kasálková N., Sajdl P., Slepička P., Švorčík V. Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility. Polym. Degrad. Stabil. 2014;101:1–9. doi: 10.1016/j.polymdegradstab.2014.01.024. DOI
Cai X., Lei T., Sun D., Lin L. A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv. 2017;7:15382–15389. doi: 10.1039/C7RA01267E. DOI
Bormashenko Y., Pogreb R., Stanevsky O., Bormashenko E. Vibrational spectrum of PVDF and its interpretation. Polym. Test. 2004;23:791–796. doi: 10.1016/j.polymertesting.2004.04.001. DOI
Čech Barabaszová K., Holešová S., Hundáková M., Kalendová A. Tribo-Mechanical Properties of the Antimicrobial Low-Density Polyethylene (LDPE) Nanocomposite with Hybrid ZnO-Vermiculite-Chlorhexidine Nanofillers. Polymers. 2020;12:2811. doi: 10.3390/polym12122811. PubMed DOI PMC
Lizundia E., Reizabal A., Costa C.M., Maceiras A., Lanceros-Méndez S. Electroactive γ-Phase, Enhanced Thermal and Mechanical Properties and High Ionic Conductivity Response of Poly (Vinylidene Fluoride)/Cellulose Nanocrystal Hybrid Nanocomposites. Materials. 2020;13:743. doi: 10.3390/ma13030743. PubMed DOI PMC
Čech Barabaszová K., Holešová S., Hundáková M., Hrabovská K., Plesník L., Kimmer D., Joszko K., Gzik-Zroska B., Basiaga M. Antimicrobial PVDF nanofiber composites with the ZnO—vermiculite chlorhexidine based nanoparticles and their tensile properties. Polym. Test. 2021;103:107367. doi: 10.1016/j.polymertesting.2021.107367. DOI
Kong F., Chang M., Wang Z. Comprehensive Analysis of Mechanical Properties of CB/SiO2/PVDF Composites. Polymers. 2020;12:146. doi: 10.3390/polym12010146. PubMed DOI PMC