The Inability of Ex Vivo Expanded Mesenchymal Stem/Stromal Cells to Survive in Newborn Mice and to Induce Transplantation Tolerance
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35288846
DOI
10.1007/s12015-022-10363-7
PII: 10.1007/s12015-022-10363-7
Knihovny.cz E-zdroje
- Klíčová slova
- Cytokines, Immunological reactivity, Mesenchymal stem cells, Newborn mice, Skin grafts, Transplantation tolerance,
- MeSH
- cytokiny MeSH
- interleukin-2 MeSH
- mezenchymální kmenové buňky * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- novorozená zvířata MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- transplantační tolerance MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- interleukin-2 MeSH
An encounter of the developing immune system with an antigen results in the induction of immunological areactivity to this antigen. In the case of transplantation antigens, the application of allogeneic hematopoietic cells induces a state of neonatal transplantation tolerance. This tolerance depends on the establishment of cellular chimerism, when allogeneic cells survive in the neonatally treated recipient. Since mesenchymal stem/stromal cells (MSCs) have been shown to have low immunogenicity and often survive in allogeneic recipients, we attempted to use these cells for induction of transplantation tolerance. Newborn (less than 24 h old) C57BL/6 mice were injected intraperitoneally with 5 × 106 adipose tissue-derived MSCs isolated from allogeneic donors and the fate and survival of these cells were monitored. The impact of MSC application on the proportion of cell populations of the immune system and immunological reactivity was assessed. In addition, the survival of skin allografts in neonatally treated recipients was tested. We found that in vitro expanded MSCs did not survive in neonatal recipients, and the living MSCs were not detected few days after their application. Furthermore, there were no significant changes in the proportion of individual immune cell populations including CD4+ cell lineages, but we detected an apparent shift to the production of Th1 cytokines IL-2 and IFN-γ in neonatally treated mice. However, skin allografts in the MSC-treated recipients were promptly rejected. These results therefore show that in vitro expanded MSCs do not survive in neonatal recipients, but induce a cytokine imbalance without induction of transplantation tolerance.
Zobrazit více v PubMed
Billingham, R. E., Brent, L., & Medawar, P. B. (1953). Actively acquired tolerance of foreign cells. Nature (Lond.), 172, 603–605 DOI
Hasek, M. (1953). Vegetative hybridization of animals by joing their blood circulations during embryonic life. Csech Biology, 2, 265–277
Holan, V., Chutna, J., & Hasek, M. (1978). Specific suppression of antigen-reactive cells in neonatal transplantation tolerance. Nature (Lond.), 274, 895–897 DOI
Burnet, F. M. (1959). The clonal selection theory of acquired immunity. Cambridge University Press DOI
Nossal, G. J. (1991). Molecullar and cellular aspects of immunologic tolerance. European Journal of Biochemistry, 202, 729–737
Schwartz, R. H. (2003). T cell anergy. Annual Review of Immunology, 21, 305–334
Dorsch, S., & Roser, B. (1975). T cells mediate transplantation tolerance. Nature (Lond.), 258, 233–235 DOI
Gao, Q., Rouse, T. M., Kazmerzak, K., & Field, E. H. (1999). CD4 + CD25 + cells regulate CD8 cell anergy in neonatal tolerant mice. Transplantation, 68, 1891–1897 DOI
Lubaroff, D. M., Silvers, W. K. (1973). Importance of chimerism in maintaining tolerance of skin allografts in mice. Journal of Immunology, 111, 65–71
Durkin, E. T., Jones, K. A., Rajesh, D., & Shaaban, A. F. (2008). Early chimerism threshold predicts sustained engraftment and NK-cell tolerance in prenatal allogeneic chimeras. Blood, 112, 5245–5253 DOI
Zuber, J., & Sykes, M. (2017). Mechanisms of mixed chimerism-based transplant tolerance. Trends in Immunology, 38, 829–843
Oura, T., Cosimi, A. B., & Kawai, T. (2017). Chimerism-based tolerance in organ transplantation: preclinical and clinical studies. Clinical and Experimental Immunology, 189, 190–196 DOI
Sellers, M. T., Deierhoi, M. H., Curtis, J. J., Gaston, R. S., Julian, B. A., Lanier, D. C. Jr., & Diethelm, A. G. (2001). Tolerance in renal transplantation after allogeneic bone marrow transplantation-6-year follow-up. Transplantation, 71, 1681–1683
Nunez-Villaveiran, T., Feasel, P., Keenan, S., Aliotta, R., Bosler, D., Stearns, D., Bergfeld W. & Gurunluoglu, R. (2019). Donor skin allograft survival after bone marrow transplantation: Case report and systematic review of the literature. Journal of Plastic, Reconstructive and Aesthetic Surgery, 72, 23–34
Muñoz-Elias, G., Marcus, A. J., Coyne, T. M., Woodbury, D. & Black, I. B. (2004). Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. Journal of Neuroscience, 24, 4585–4595
Dai, W., Hale, S. L., Martin, B. J., Kuang, J.-Q., Dow, J. S., Wold, L. E. & Kloner, R. A. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation, 112, 214–223
Tzameret, A., Sher, I., Belkin, M., Treves, A. J., Meir, A., Nagler, A. … Solomon, A. S. (2015). Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration. Stem Cell Research, 15, 387–394
Caliari-Oliveira, C., Yaochite, J. N., Ramalho, L. N., Palma, P. V., Carlos, D., Cunha Fde, Q. … Voltarelli, J. C. (2016). Xenogeneic mesenchymal stromal cells improve wound healing and modulate the immune response in an extensive burn model. Cell Transplantation, 25, 201–215
Liu, X. B., Chen, H., Chen, H. Q., Zhu, M. F., Hu, X. Y., Wang, Y. P. … Wang, J. A. (2012). Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. Journal of Zhejiang University - Science B, 13, 616–623
Eggenhofer, E., Benseler, V., Kroemer, A., Popp, F. C., Geissler, E. K., Schlitt, H. J., & Hoogduijn, M. J. (2012). Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Frontiers in Immunology, 3, 297 DOI
Abdi, R., Fiorina, P., Adra, C. N., Atkinson, M., Sayegh, M. H. (2008). Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes, 57, 1759–1767
Holan, V., Trosan, P., Cejka, C., Javorkova, E., Zajicova, A., Hermankova, B. ... Cejkova, J. (2015). A comparative study of the therapeutic potential of mesenchymal stem cells and limbal epithelial stem cells for ocular surface reconstruction. Stem Cells and Translation Medicine, 4, 1052–1063 DOI
Weiss, A. R. R., & Dahlke, M. H. (2019). Immunomodulation by mesenchymal stem cells (MSCs): Mechanisms of action of living, apoptotic, and dead MSCs. Frontiers in Immunology, 10, 1191. https://doi.org/10.3389/fimmu.2019.01191
de Witte, S. F. H., Luk, F., Sierra Parraga, J. M., Gargesha, M., Merino, A., Korevaar, S. S. … Hoogduijn, M. J. (2018). Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells, 36, 602–615
Preda, M. B., Neculachi, C. A., Fenyo, I. M., Vacaru, A. M., Publik, M. A., Simionescu, M., & Burlacu, A. (2021). Short lifespan of syngeneic transplanted MSC is a consequence of in vivo apoptosis and immune cell recruitment in mice. Cell Death and Disease, 12, 566 DOI
Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L., & Luo, L. (2007). A global double-fluorescent Cre reporter mouse. Genesis, 45, 593–605
Holan, V., Echalar, B., Palacka, K., Kossl, J., Bohacova, P., Krulova, M. … Zajicova, A. (2021). The altered migration and distribution of systemically administered mesenchymal stem cells in morphine-treated recipients. Stem Cell Reviews and Reports, 14, 801–801 DOI
Hajkova, M., Javorkova, E., Zajicova, A., Trosan, P., Holan, V., & Krulova, M. (2017). A local application of mesenchymal stem cells and cyclosporine A attenuates immune response by a switch in macrophage phenotype. Journal of Tissue Engineering and Regenerative. Medicine, 11, 1456–1465 DOI
Lencova, A., Pokorna, K., Zajicova, A., Krulova, M., Filipec, M., & Holan, V. (2011). Graft survival and cytokine production in the experimental mouse model of limbal transplantation. Transplant Immunology, 24, 189–194 DOI
Billingham, R. E., Brent, L., Medawar, P. B., & Sparrow, E. M. (1954). Quantitative studies on tissue transplantation immunity. I. The survival times of skin homografts exchanged between members of different inbred strains of mice. Proceedings of the Royal Society of London B: Biological Sciences, 143, 43–58
Hajkova, M., Jaburek, F., Porubska, B., Bohacova, P., Holan, V. & Krulova, M. (2009). Cyclosporine A promotes the therapeutic effect of mesenchymal stem cells on transplantation reaction. Clinical Science (Lond.), 133, 2143–2157
Hasek, M., & Holan, V. (1981). Relative immunogenecity and tolerogenicity of individual regions or segments of the MHC. Scandinavian Journal of Immunology, 14, 669–672 DOI
Bandeira, A., Coutinho, A., Carnaud, C., Jacquemart, F., & Forni, L. (1989). Transplantation tolerance correlates with high levels of T- and B-lymphocyte activity. Proceedings of the National Academy of Sciences of the United States of America, 86, 272–276
Holan, V., Sedlackova, K. & Ruzickova, M. (1996). Production of high levels of Th1 and Th2 cytokines in mice with acquired transplantation tolerance. Cellular Immunology, 174, 7–12
Chen, N., Gao, Q, Field, E. H. (1996). Prevention of Th1 response is critical for tolerance. Transplantation, 61, 1076–1083
Tracy, S. A., Chalphin, A. V., Lazow, S. P., Kycia, I., Finkelstein, A., Chan, C. … Fauza, D. O. (2020). Postnatal fate of donor mesenchymal stem cells after transamniotic stem cell therapy in a healthy model. Journal of Pediatric Surgery, 55, 1113–1116
Liao, X., Li, F., Wang, X., Yanoso, J., Niyibizi, C. (2008). Distribution of murine adipose-derived mesenchymal stem cells in vivo following transplantation in developing mice. Stem Cells and Development, 17, 303–314
Wagner, W., Ho, A. D., & Zenke, M. (2010). Different facets of aging in human mesenchymal stem cells. Tissue Engineering Part B Reviews, 16, 445–453 DOI
Rombouts, W. J., & Ploemacher, R. E. (2003). Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 17, 160–170 DOI
Chua, B. A., & Signer, R. A. J. (2020). Hematopoietic stem cell regulation by the proteostasis network. Current Opinions in Hematology, 27, 254–263 DOI
Muhammad, G., Xu, J., Bulte, J. W. M., Jablonska, A., Walczak, P. & Janowski, M. (2017). Transplanted adipose-derived stem cells can be short-lived yet accelerate healing of acid-burn skin wounds: a multimodal imaging study. Scientific Reports, 7(1):4644
Chen, Y., Tristan, C. A., Chen, L., Jovanovic, V. M., Malley, C., Chu, P.-H., Ryu, S., Deng, T., Ormanoglu, P., Tao, D., Fang, Y., Slamecka, J., Hong, H., LeClair, C. A., Michael, S., Austin, C. P., Simeonov, A., Singeç, I. (2021). A versatile polypharmacology platform promotes cytoprotection and viability of human pluripotent and differentiated cells. Nature Methods, 18, 528–541
Hu, J., Yu, X., Wang, Z., Wang, F., Wang, L., Gao, H., Chen, Y., Zhao, W., Jia, Z., Yan, S., Wang, Y. (2013). Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocrinology Journal, 60, 347–357
Abumaree, M., Jumah, M. A., Pace, R. A., Kalionis, B. (2012). Immunosuppressive properties of mesenchymal stem cells. Stem Cell Reviews and Reports, 8, 375–392
Holan, V., Hermankova, B., Krulova, M., & Zajicova, A. (2019). Cytokine interplay among diseased retina, inflammatory cells and mesenchymal stem cells – a clue to stem cell-based therapy. World Journal of Stem Cells, 11, 957–967 DOI
Luk, F., de Witte, S. F., Korevaar, S. S., Roemeling-van Rhijn, M., Franquesa, M., Strini, T. … Hoogduijn, M. J. (2016). Inactivated mesenchymal stem cells maintain immunomodulatory capacity. Stem Cells and Development, 25, 1342–1354