The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population

. 2012 Apr 10 ; 21 (6) : 901-10. [epub] 20110726

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21663543

Bone marrow-derived mesenchymal stem cells (MSCs) modulate immune response and can produce significant levels of transforming growth factor-β (TGF-β) and interleukin-6 (IL-6). These 2 cytokines represent the key factors that reciprocally regulate the development and polarization of naive T-cells into regulatory T-cell (Treg) population or proinflammatory T helper 17 (Th17) cells. In the present study we demonstrate that MSCs and their products effectively regulate expression of transcription factors Foxp3 and RORγt and control the development of Tregs and Th17 cells in a population of alloantigen-activated mouse spleen cells or purified CD4(+)CD25(-) T-cells. The immunomodulatory effects of MSCs were more pronounced when these cells were stimulated to secrete TGF-β alone or TGF-β together with IL-6. Unstimulated MSCs produce TGF-β, but not IL-6, and the production of TGF-β can be further enhanced by the anti-inflammatory cytokines IL-10 or TGF-β. In the presence of proinflammatory cytokines, MSCs secrete significant levels of IL-6, in addition to a spontaneous production of TGF-β. MSCs producing TGF-β induced preferentially expression of Foxp3 and activation of Tregs, whereas MSC supernatants containing TGF-β together with IL-6 supported RORγt expression and development of Th17 cells. The effects of MSC supernatants were blocked by the inclusion of neutralization monoclonal antibody anti-TGF-β or anti-IL-6 into the culture system. The results showed that MSCs represent important players that reciprocally regulate the development and differentiation of uncommitted naive T-cells into anti-inflammatory Foxp3(+) Tregs or proinflammatory RORγt(+) Th17 cell population and thereby can modulate autoimmune, immunopathological, and transplantation reactions.

Zobrazit více v PubMed

Di Nicola M. Carlo-Stella C. Magni M. Milanesi M. Longoni PD. Matteucci P. Grisanti S. Gianni AM. Human bone marrow stroma cells suppress T-lymphocyte proliferation induced by cellular and nonspecific mitogenic stimuli. Blood. 2002;99:3838–3843. PubMed

Bartholomew A. Sturgeon C. Siatskas M. Ferrer K. McIntosh K. Patil S. Hardy W. Devine S. Ucker D. Deans R. Moseley A. Hoffman R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30:42–48. PubMed

Le Blanc K. Tammik L. Sundberg B. Haynesworth SE. Ringdén O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57:11–20. PubMed

Angoulvant D. Clerc A. Benchalal S. Galambrun C. Farre A. Bertrand Y. Eljaafari A. Human mesenchymal stem cells suppress induction of cytotoxic response to alloantigens. Biorhealogy. 2004;41:469–476. PubMed

Djouad F. Plence P. Bony C. Tropel P. Apparailly F. Sany J. Noël D. Jorgensen C. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003;102:3837–3844. PubMed

Le Blanc K. Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med. 2007;262:509–525. PubMed

Casiraghi F. Azzollini N. Cassis P. Imberti B. Morigi M. Cugini D. Cavinato RA. Todeschini M. Solini S. Sonzogni A. Perico N. Remuzzi G. Noris M. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol. 2008;181:3933–3946. PubMed

Parekkadan B. Tilles AW. Yarmush ML. Bone marrow-derived mesenchymal stem cells ameliorate autoimmune enteropathy independently of regulatory T cells. Stem Cells. 2008;26:1913–1919. PubMed

Fang L. Lange C. Engel M. Zander AR. Febse B. Sensitive balance of suppressing and activating effects of mesenchymal stem cells on T-cell proliferation. Transplantation. 2006;82:1370–1373. PubMed

Bocelli-Tyndall C. Bracci L. Schaeren S. Feder-Mengus C. Barbero A. Tyndall A. Spagnoli GC. Human bone marrow stem cells and chondrocytes promote and/or suppress the in vitro proliferation of lymphocytes stimulated with the cytokines IL 2, IL 7 and IL 15. Ann Rheum Dis. 2009;8:1352–1359. PubMed

Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy. 2009;5:485–489. PubMed

Rasmusson I. Ringdén O. Sundberg B. Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res. 2005;305:33–41. PubMed

Caplan AI. Why are MSC therapeutic? New data: new insight. J Pathol. 2009;217:318–324. PubMed PMC

Ge W. Jiang J. Arp J. Liu W. Garcia B. Wang H. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation. 2010;90:1312–1320. PubMed

Oh JY. Kim MK. Shin MS. Wee WR. Lee JH. Cytokine secretion by human mesenchymal stem cells cocultured with damaged corneal epithelial cells. Cytokine. 2009;46:100–103. PubMed

Liu X-J. Zhang J-F. Sun B. Peng H-S. Kong Q-F. Bai S-S. Liu Y-M. Wang G-Y. Wang J-H. Li H-L. Reciprocal effects of mesenchymal stem cells on experimental autoimmune encephalomyelitis is mediated by transforming growth factor-β and interleukin-6. Clin Exp Immunol. 2009;158:37–44. PubMed PMC

Bettelli E. Carrier Y. Gao W. Korn T. Strom TN. Gukka M. Wiener HL. Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–238. PubMed

Weaver CT. Hatton RD. Mangan PR. Harrington IE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25:821–852. PubMed

Zhou L. Ivanov II. Spolski R. Min R. Shenderov K. Egawa T. Levy DE. Leonard WJ. Littman DR. IL-6 programs TH17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;8:967–974. PubMed

Ichiyama K. Yoshida H. Wakayabashi Y. Chinen T. Saeki K. Nakaya M. Takaesu G. Hori S. Yoshimura A. Kobayashi T. Foxp3 inhibits RORγt-mediated IL-17A mRNA transcription through direct interaction with RORγt. J Biol Sci. 2008;283:17003–17008. PubMed

Zhou L. Lopes JE. Chong MMW. Ivanov II. Min R. Victora GD. Shen Y. Du J. Rubtsov YP. Rudensky AY. Ziegler SF. Littman DR. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature. 2008;453:236–241. PubMed PMC

Aggarwal S. Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–1822. PubMed

Meisel R. Zibert A. Laryea M. Gobel U. Daubener W. Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103:4619–4621. PubMed

Tropel P. Noël D. Platet N. Legrand P. Benabid A-L. Berger F. Isolation and characterization of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res. 2004;295:395–406. PubMed

Tomonari K. A rat antibody against a structure functionally related to the mouse T-cell receptor/T3 complex. Immunogenetics. 1988;28:455–458. PubMed

Green LC. Wagner DA. Glogowski J. Skipper PL. Wishnok JS. Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem. 1982;126:131–138. PubMed

Prochazkova J. Fric J. Pokorna K. Neuwirth A. Krulova M. Zajicova A. Holan V. Distinct regulatory roles of TGF-β and IL-4 in development and maintenance of natural and induced CD4+CD25+Foxp3+ regulatory T cells. Immunology. 2009;128:670–678. PubMed PMC

Holan V. Pokorna K. Prochazkova J. Krulova M. Zajicova A. Immunoregulatory properties of mouse limbal stem cells. J Immunol. 2010;184:2124–2129. PubMed

Zajicova A. Pokorna K. Lencova A. Krulova M. Svobodova E. Kubinova S. Sykova E. Pradny M. Michalek J. Svobodova J. Munzarova M. Holan V. Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transplant. 2010;19:1281–1290. PubMed

Crop MJ. Baan CC. Korevaar SS. Ijzermans JNM. Weimar W. Hoogduijn MJ. Human adipose tissue-derived mesenchymal stem cells induce explosive T-cell proliferation. Stem Cells Dev. 2010;19:1843–1853. PubMed

Kimura A. Naka T. Kishimoto T. IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci USA. 2007;104:12099–12104. PubMed PMC

Manel N. Unutmaz D. Littman DR. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat Immunol. 2008;9:641–649. PubMed PMC

Sato K. Ozaki K. Oh I. Meguro A. Hatanaka K. Nagai T. Muroi K. Ozawa K. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 2007;109:228–234. PubMed

Maccario R. Podesta M. Moretta A. Cometa A. Comoli P. Montagna D. Daudt L. Ibatici A. Piaggio G. Pozzi S. Frassoni F. Locatelli F. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica. 2005;90:516–525. PubMed

Rafei M. Campeau PM. Aguilar-Mahecha A. Buchanan M. Williams P. Birman E. Yuan S. Young YK. Boivin MN. Forner K. Basik M. Galipeau J. Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol. 2009;182:5994–6002. PubMed

Choi JJ. Yoo SA. Park SJ. Kang YJ. Kim WU. Oh IH. Cho CS. Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen-induced arthritis in mice. Clin Exp Immunol. 2008;153:269–276. PubMed PMC

Ge W. Jiang J. Baroja ML. Arp J. Zassoko R. Liu W. Bartholomew A. Garcia B. Wang H. Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance. Am J Transplant. 2009;9:1760–1772. PubMed

Le Blanc K. Rasmusson I. Sundberg B. Götherström C. Hassan M. Uzunel M. Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363:1439–1441. PubMed

Polchert D. Sobinsky J. Douglas GW. Kidd M. Moadsiri A. Reina E. Genrich K. Mehrotra S. Setty S. Smith B. Bartholomew A. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol. 2008;38:1745–1755. PubMed PMC

Sudres M. Norol F. Trenado A. Grégoire S. Charlotte F. Levacher B. Lataillade JJ. Bourin P. Holy X. Vernant JP. Klatzmann D. Cohen JL. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J Immunol. 2006;176:7761–7767. PubMed

Sbano P. Cuccia A. Mazzanti B. Urbani S. Giusti B. Lapini I. Rossi L. Abbate R. Marseglia G. Nannetti G. Torricelli F. Miracco C. Bosi A. Fimiani M. Saccardi R. Use of donor bone marrow mesenchymal stem cells for treatment of skin allograft rejection in a preclinical rat model. Arch Dermatol Res. 2008;300:115–124. PubMed

Ghannman S. Pene J. Torcy-Moquet G. Jorgensen C. Yssel H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol. 2010;185:302–312. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Perspectives and Limitations of Mesenchymal Stem Cell-Based Therapy for Corneal Injuries and Retinal Diseases

. 2025 Jan-Dec ; 34 () : 9636897241312798.

Sertoli Cells Possess Immunomodulatory Properties and the Ability of Mitochondrial Transfer Similar to Mesenchymal Stromal Cells

. 2021 Oct ; 17 (5) : 1905-1916. [epub] 20210611

Mesenchymal Stem Cell-Based Therapy for Retinal Degenerative Diseases: Experimental Models and Clinical Trials

. 2021 Mar 07 ; 10 (3) : . [epub] 20210307

Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cells - a clue to stem cell-based therapy

. 2019 Nov 26 ; 11 (11) : 957-967.

Immunomodulatory Properties of Bone Marrow Mesenchymal Stem Cells from Patients with Amyotrophic Lateral Sclerosis and Healthy Donors

. 2019 Jun ; 14 (2) : 215-225. [epub] 20180921

Mesenchymal Stem Cells Attenuate the Adverse Effects of Immunosuppressive Drugs on Distinct T Cell Subopulations

. 2017 Feb ; 13 (1) : 104-115.

The Favorable Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties Changed after Alkali Burns

. 2016 ; 2016 () : 5843809. [epub] 20160105

A Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction

. 2015 Sep ; 4 (9) : 1052-63. [epub] 20150716

Modulation of the early inflammatory microenvironment in the alkali-burned eye by systemically administered interferon-γ-treated mesenchymal stromal cells

. 2014 Oct 15 ; 23 (20) : 2490-500. [epub] 20140701

Distinct cytokines balance the development of regulatory T cells and interleukin-10-producing regulatory B cells

. 2014 Apr ; 141 (4) : 577-86.

Mesenchymal stem cells, nanofiber scaffolds and ocular surface reconstruction

. 2013 Oct ; 9 (5) : 609-19.

The key role of insulin-like growth factor I in limbal stem cell differentiation and the corneal wound-healing process

. 2012 Dec 10 ; 21 (18) : 3341-50. [epub] 20120911

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...