Phospholipid fatty acids as physiological indicators of Paracoccus denitrificans encapsulated in silica sol-gel hydrogels

. 2015 Feb 03 ; 15 (2) : 3426-34. [epub] 20150203

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25690547

The phospholipid fatty acid (PLFA) content was determined in samples of Paracoccus denitrificans encapsulated in silica hydrogel films prepared from prepolymerized tetramethoxysilane (TMOS). Immediately after encapsulation the total PLFA concentration was linearly proportional to the optical density (600 nm) of the input microbial suspension (R2 = 0.99). After 7 days this relationship remained linear, but with significantly decreased slope, indicating a higher extinction of bacteria in suspensions of input concentration 108 cells/mL and higher. trans-Fatty acids, indicators of cytoplasmatic membrane disturbances, were below the detection limit. The cy/pre ratio (i.e., ratio of cyclopropylated fatty acids (cy17:0 + cy19:0) to their metabolic precursors (16:1ω7 + 18:1ω7)), an indicator of the transition of the culture to a stationary growth-phase, decreased depending on co-immobilization of nutrients in the order phosphate buffer > mineral medium > Luria Broth rich medium. The ratio, too, was logarithmically proportional to cell concentration. These results confirm the applicability of total PLFA as an indicator for the determination of living biomass and cy/pre ratio for determination of nutrient limitation of microorganisms encapsulated in sol-gel matrices. This may be of interest for monitoring of sol-gel encapsulated bacteria proposed as optical recognition elements in biosensor construction, as well as other biotechnological applications.

Zobrazit více v PubMed

Kuncova G., Trogl J. Physiology of Microorganisms Immobilized into Inorganic Polymers. In: Morrison D.A., editor. Handbook of Inorganic Chemistry Research. Nova Science Publishers Inc; New York, NY, USA: 2010. pp. 53–101.

Gadre S.Y., Gouma P.I. Biodoped ceramics: Synthesis, properties, and applications. J. Am. Ceramic Soc. 2006;89:2987–3002.

Coradin T., Allouche J., Boissiere M., Livage J. Sol-Gel biopolymer/silica nanocomposites in biotechnology. Curr. Nanosci. 2006;2:219–230.

Desimone M.F., Alvarez G.S., Foglia M.L., Diaz L.E. Development of sol-gel hybrid materials for whole-cell immobilization. Recent Pat. Biotechnol. 2009;3:55–60. PubMed

Kuncova G. Sensors with biorecognition elements entrapped into silica based polymers. In: Innocenzi P., Zub Y.L., Kessler V.G., editors. Sol-Gel Methods for Materials Processing—Focusing on Materials for Pollution Control, Water Purification, and Soil Remediation. Springer; Dordrecht, The Netherlands: 2008. pp. 349–354.

Gavlasova P., Kuncova G., Kochankova L., Mackova M. Whole cell biosensor for polychlorinated biphenyl analysis based on optical detection. Int. Biodeterior. Biodegrad. 2008;62:304–312.

Jeronimo P.C.A., Araujo A.N., Montenegro M. Optical sensors and biosensors based on sol-gel films. Talanta. 2007;72:13–27. PubMed

Trogl J., Ripp S., Kuncova G., Sayler G., Churava A., Parik P., Demnerova K., Halova J., Kubicova L. Selectivity of whole cell optical biosensor with immobilized bioreporter Pseudomonas fluorescens HK44. Sens. Actuators B Chem. 2005;107:98–103.

Kuncova G., Trogl J. Living Microorganisms Immobilized in Inorganic Matrices. Chem. Listy. 2011;105:830–838.

Junter G.A., Jouenne T. Immobilized viable microbial cells: From the process to the proteome or the cart before the horse. Biotechnol. Adv. 2004;22:633–658. PubMed

Kaur A., Chaudhary A., Choudhary R., Kaushik R. Phospholipid fatty acid—A bioindicator of environment monitoring and assessment in soil ecosystem. Curr. Sci. 2005;89:1103–1112.

Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol. Fertil. Soils. 1999;29:111–129.

Frostegard A., Baath E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils. 1996;22:59–65.

Zelles L., Bai Q.Y., Rackwitz R., Chadwick D., Beese F. Determination of phospholipid-derived and lipopolysaccharide-derived fatty-acids as an estimate of microbial biomass and community structures in soils. Biol. Fertil. Soils. 1995;19:115–123.

Trogl J., Jirkova I., Zemankova P., Pilarova V., Danova P., Pavlorkova J., Kuran P., Popelka J., Kriklavova L. Estimation of the quantity of bacteria encapsulated in Lentikats Biocatalyst via phospholipid fatty acids content: A preliminary study. Folia Microbiol. 2013;58:135–140. PubMed

Trogl J., Krhutkova O., Pilarova V., Danova P., Holicek R., Kohlova M., Hejda S., Smrcka J., Bouskova A., Kriklavova L. Removal of nitrates from high-salinity wastewaters from desulphurization process with denitrifying bacteria encapsulated in Lentikats Biocatalyst. Int. J. Environ. Sci. Technol. 2012;9:425–432.

Trogl J., Bouskova A., Mrakota J., Pilarova V., Krudencova J., Mechurova J., Krizenecka S., Stloukal R. Removal of nitrates from simulated ion-exchange brines with Paracoccus denitrificans encapsulated in Lentikats Biocatalyst. Desalination. 2011;275:82–86.

Bouskova A., Mrakota J., Stloukal R., Trogl J., Pilarova V., Kriklavova L., Lederer T. Three examples of nitrogen removal from industrial wastewater using Lentikats Biotechnology. Desalination. 2011;280:191–196.

Trogl J., Pilarova V., Bouskova A., Mrakota J., Stloukal R. Application of Lentikats Biotechnology for removal of nitrates from ion-exchange brines: Implications for adaptation of encapsulated denitrifiers. Afr. J. Biotechnol. 2011;10:18304–18310.

Cejkova A., Masak J., Jirku V. Use of mineral nutrients and surface-active substances in a biodegradation process modulation. Folia Microbiol. 1997;42:513–516. PubMed

Trogl J., Kuncova G., Kuran P. Bioluminescence of Pseudomonas fluorescens HK44 in the course of encapsulation into silica gel. Effect of methanol. Folia Microbiol. 2010;55:569–575. PubMed

Kuncova G., Podrazky O., Ripp S., Trogl J., Sayler G., Demnerova K., Vankova R. Monitoring of the viability of cells immobilized by sol-gel process. J. Sol-Gel Sci. Technol. 2004;31:335–342.

Moore-Kucera J., Dick R.P. PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence. Microb. Ecol. 2008;55:500–511. PubMed

Alvarez G.S., Foglia M.L., Copello G.J., Desimone M.F., Diaz L.E. Effect of various parameters on viability and growth of bacteria immobilized in sol-gel-derived silica matrices. Appl. Microbiol. Biotechnol. 2009;82:639–646. PubMed

Zelles L. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere. 1997;35:275–294. PubMed

Branyik T., Kuncova G. Changes in phenol oxidation rate of a mixed microbial culture caused by sol-gel immobilization. Biotechnol. Lett. 2000;22:555–560.

Rooke J.C., Leonard A., Sarmento H., Meunier C.F., Descy J.P., Su B.L. Novel photosynthetic CO2 bioconvertor based on green algae entrapped in low-sodium silica gels. J. Mater. Chem. 2011;21:951–959.

Pannier A., Oehm C., Fischer A.R., Werner P., Soltmann U., Bottcher H. Biodegradation of fuel oxygenates by sol-gel immobilized bacteria Aquincola tertiaricarbonis L108. Enzyme Microb. Technol. 2010;47:291–296.

Dickson D.J., Page C.J., Ely R.L. Photobiological hydrogen production from Synechocystis sp PCC 6803 encapsulated in silica sol-gel. Int. J. Hydrog. Energy. 2009;34:204–215.

Cappelletti E., Carturan G., Piovan A. Production of secondary metabolites with plant cells immobilized in a porous inorganic support. US Patent 5998162 A. 1999

Fiedler D., Hager U., Franke H., Soltmann U., Bottcher H. Algae biocers: astaxanthin formation in sol-gel immobilised living microalgae. J. Mater. Chem. 2007;17:261–266.

Kuncova G., Pazlarova J., Hlavata A., Ripp S., Sayler G.S. Bioluminescent bioreporter Pseudomonas putida TVA8 as a detector of water pollution. Operational conditions and selectivity of free cells sensor. Ecol. Indic. 2011;11:882–887.

Bolyo J., Mair T., Kuncova G., Hauser M.J.B. Spatiotemporal dynamics of glycolytic waves provides new insights into the interactions between immobilized yeast cells and gels. Biophys. Chem. 2010;153:54–60. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...