The Effect of Heat Treatment on the Tribological Properties and Room Temperature Corrosion Behavior of Fe-Cr-Al-Based OPH Alloy

. 2020 Nov 30 ; 13 (23) : . [epub] 20201130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33266309

Grantová podpora
17-01641S Grantová Agentura České Republiky

The microstructure, mechanical, tribological, and corrosion properties of Fe-Cr-Al-Y-based oxide-precipitation-hardened (OPH) alloy at room temperature are presented. Two OPH alloys with a composition of 0.72Fe-0.15Cr-0.06Al-0.03Mo-0.01Ta-0.02Y2O3 and 0.03Y2O3 (wt.%) were prepared by mechanical alloying with different milling times. After consolidation by hot rolling, the alloys presented a very fine microstructure with a grain size of approximately 180 nm. Such a structure is relatively brittle, and its mechanical properties are enhanced by heat treatment. Annealing was performed at three temperatures (1000 °C, 1100 °C, and 1200 °C), with a holding time from 1 to 20 h. Tensile testing, wear testing, and corrosion testing were performed to evaluate the effect of heat treatment on the behavior and microstructural properties. The grain size increased almost 10 times by heat treatment, which influenced the mechanical properties. The ultimate tensile strength increased up to 300% more compared to the initial state. On the other hand, heat treatment has a negative effect on corrosion and wear resistance.

Zobrazit více v PubMed

Auger M.A., Leguey T., Muñoz A., Monge M.A., De Castro V., Fernández P., Garcés G., Pareja R. Microstructure and mechanical properties of ultrafine-grained Fe–14Cr and ODS Fe–14Cr model alloys. J. Nucl. Mater. 2011;417:213–216. doi: 10.1016/j.jnucmat.2010.12.060. DOI

Lee J.H. Development of oxide dispersion strengthened ferritic steels with and without aluminum. Front. Energy. 2012;6:29–34. doi: 10.1007/s11708-012-0178-x. DOI

Takaya S., Furukawa T., Müller G., Heinzel A., Jianu A., Weisenburger A., Aoto K., Inoue M., Okuda T., Abe F., et al. Al-containing ODS steels with improved corrosion resistance to liquid lead–bismuth. J. Nucl. Mater. 2012;428:125–130. doi: 10.1016/j.jnucmat.2011.06.046. DOI

Nagini M., Jyothirmayi A., Vijay R., Rao T.N., Reddy A.V., Rajulapati K.V., Sundararajan G. Influence of Dispersoids on Corrosion Behavior of Oxide Dispersion-Strengthened 18Cr Steels made by High-Energy Milling. J. Mater. Eng. Perform. 2015;25:577–586. doi: 10.1007/s11665-015-1859-5. DOI

Lu Z., Faulkner R., Riddle N., Martino F., Yang K. Effect of heat treatment on microstructure and hardness of Eurofer 97, Eurofer ODS and T92 steels. J. Nucl. Mater. 2009;386:445–448. doi: 10.1016/j.jnucmat.2008.12.152. DOI

Kubena I., Fournier B., Kruml T. Effect of microstructure on low cycle fatigue properties of ODS steels. J. Nucl. Mater. 2012;424:101–108. doi: 10.1016/j.jnucmat.2012.02.011. DOI

Siska F., Stratil L., Hadraba H., Fintová S., Kubena I., Zalezak T., Bartkova D. High temperature deformation mechanisms in the 14% Cr ODS alloy. Mater. Sci. Eng. A. 2017;689:34–39. doi: 10.1016/j.msea.2017.02.037. DOI

Stratil L., Siska F., Hadraba H., Bartkova D., Fintova S., Puchy V. Fracture behavior of the ODS steels prepared by internal oxidation. Fusion Eng. Des. 2017;124:1108–1111. doi: 10.1016/j.fusengdes.2017.03.008. DOI

Wang L.-X., Song C.-J., Sun F.-M., Li L.-J., Zhai Q.-J. Microstructure and mechanical properties of 12wt.% Cr ferritic stainless steel with Ti and Nb dual stabilization. Mater. Des. 2009;30:49–56. doi: 10.1016/j.matdes.2008.04.040. DOI

Chao J., Rementeria R., Aranda M., Capdevila C., González-Carrasco J.L. Comparison of Ductile-to-Brittle Transition Behavior in Two Similar Ferritic Oxide Dispersion Strengthened Alloys. Materials. 2016;9:637. doi: 10.3390/ma9080637. PubMed DOI PMC

Khalaj O., Jirková H., Mašek B., Hassasroudsari P., Studecký T., Svoboda J. Using thermomechanical treatments to improve the grain growth of new-generation ODS alloys. Mater. Tehnol. 2018;52:475–482. doi: 10.17222/mit.2017.148. DOI

Zakine C., Prioul C., François D. Creep behaviour of ODS steels. Mater. Sci. Eng. A. 1996;219:102–108. doi: 10.1016/S0921-5093(96)10415-9. DOI

Palm M. Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. Intermetallics. 2005;13:1286–1295. doi: 10.1016/j.intermet.2004.10.015. DOI

Bártková D., Šmíd M., Mašek B., Svoboda J., Šiška F. Kinetic study of static recrystallization in an Fe–Al–O ultra-fine-grained nanocomposite. Philos. Mag. Lett. 2017;97:379–385. doi: 10.1080/09500839.2017.1378445. DOI

Khalaj O., Jirková H., Janda T., Kučerová L., Studecký T., Svoboda J. Improving the high-temperature properties of a new generation of Fe-Al-O oxide-precipitation-hardened steels. Mater. Tehnol. 2019;53:495–504. doi: 10.17222/mit.2018.227. DOI

Khalaj O., Jirková H., Jeníček Š., Račický A., Svoboda J. Annealing effects on the microstructure and thermomechanical properties of New-Generation ODS Alloys. Key Eng. Mater. 2020;834:67–74. doi: 10.4028/www.scientific.net/KEM.834.67. DOI

Khalaj O., Jirková H., Opatová K., Svoboda J. Microstructural and Hardness Evolution of New Developed OPH Steels. Solid State Phenom. 2019;294:92–97. doi: 10.4028/www.scientific.net/SSP.294.92. DOI

Khalaj O., Mašek B., Jirková H. Investigation on new creep- and oxidation-resistant materials. Mater. Tehnol. 2015;49:645–651. doi: 10.17222/mit.2014.210. DOI

Khalaj O., Mašek B., Jirková H., Svoboda J. Experimental Study on Thermomechanical Properties of New-Generation ODS Alloys. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2017;11:456–459.

Khalaj O., Saebnoori E., Jirková H., Chocholatý O., Svoboda J. High Temperature and Corrosion Properties of A Newly Developed Fe-Al-O Based OPH Alloy. Metals. 2020;10:167. doi: 10.3390/met10020167. PubMed DOI PMC

Svoboda J., Horník V., Stratil L., Hadraba H., Mašek B., Khalaj O., Jirková H. Microstructure Evolution in ODS Alloys with a High-Volume Fraction of Nano Oxides. Metals. 2018;8:1079. doi: 10.3390/met8121079. DOI

Mašek B., Khalaj O., Jirková H., Svoboda J., Bublíková D. Influence of thermomechanical treatment on the grain-growth behaviour of new Fe-Al based alloys with fine Al2O3 precipitates. Mater. Tehnol. 2017;51:759–768. doi: 10.17222/mit.2016.232. DOI

Mašek B., Khalaj O., Nový Z., Kubina T., Jirková H., Svoboda J., Štádler C. Behaviour of new ODS alloys under single and multiple deformation. Mater. Tehnol. 2016;50:891–898. doi: 10.17222/mit.2015.156. DOI

Khalaj O., Ghobadi M., Zarezadeh A., Saebnoori E., Jirková H., Chocholaty O., Svoboda J. Potential role of machine learning techniques for modeling the hardness of OPH steels. Mater. Today Commun. 2020:101806. doi: 10.1016/j.mtcomm.2020.101806. DOI

Noh S., Choi B.-K., Han C.-H., Kang S.H., Jang J., Jeong Y.-H., Kim T.K. Effects Of Heat Treatments On Microstructures And Mechanical Properties of Dual Phase Ods Steels For High Temperature Strength. Nucl. Eng. Technol. 2013;45:821–826. doi: 10.5516/NET.02.2013.529. DOI

Sun W., Cai Q., Luo Q., He J., Gu J.-J. Effects of diffusion annealing on microstructure and anti-oxidation property of hot-dipped aluminum coating on 45 steel. Trans. Mater. Heat Treat. 2011;32:1–4.

Svoboda J., Ecker W., Razumovskiy V., Zickler G., Fischer F.D. Kinetics of interaction of impurity interstitials with dislocations revisited. Prog. Mater. Sci. 2019;101:172–206. doi: 10.1016/j.pmatsci.2018.10.001. DOI

Chlupová A., Šulák I., Svoboda J. High Temperature Cyclic Plastic Response of New-Generation ODS Alloy. Metals. 2020;10:804. doi: 10.3390/met10060804. DOI

Dymáček P., Svoboda J., Jirková H., Stratil L., Horník V. Microstructure evolution and creep strength of new-generation oxide dispersion strengthened alloys with high volume fraction of nano-oxides. Procedia Struct. Integr. 2019;17:427–433. doi: 10.1016/j.prostr.2019.08.056. DOI

Svoboda J., Luptáková N., Jarý M., Dymáček P. Influence of Hot Consolidation Conditions and Cr-Alloying on Microstructure and Creep in New-Generation ODS Alloy at 1100 °C. Materials. 2020;13:5070. doi: 10.3390/ma13225070. PubMed DOI PMC

Ralston K., Birbilis N. Effect of Grain Size on Corrosion: A Review. Corrosion. 2010;66:075005. doi: 10.5006/1.3462912. DOI

Yang J., Guo Y., Zai W., Ma S., Dong L., Li G. Preparation and properties of the anodized film on Fe-Cr-Al alloy surface. Anti Corros. Methods Mater. 2020;67:379–386. doi: 10.1108/ACMM-11-2019-2209. DOI

Olsson C.-O., Landolt D. Passive films on stainless steels—Chemistry, structure and growth. Electrochim. Acta. 2003;48:1093–1104. doi: 10.1016/S0013-4686(02)00841-1. DOI

Khalaj O., Saebnoori E., Jirková H., Chocholaty O., Svoboda J. Corrosion Behavior and Mechanical Properties of New Developed Oxide Precipitation Hardened Steels. Key Eng. Mater. 2020;846:87–92. doi: 10.4028/www.scientific.net/KEM.846.87. DOI

Pelegrini L., Bittencourt S.D., Pauletti P., De Verney J.C.K., Dias M.D.M., Schaeffer L. Influence of Milling Time During the Mechanical Alloying Process on the Properties of Fe-3Si-0.75P Alloy. Mater. Res. 2015;18:1070–1076. doi: 10.1590/1516-1439.021715. DOI

Fellah M., Labaïz M., Assala O., Dekhil L., Taleb A., Rezag H., Iost A. Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb Alloys for Total Hip Prosthesis. Adv. Tribol. 2014;2014:1–13. doi: 10.1155/2014/451387. DOI

Adibpour A.H., Ebrahimzadeh I., Gharavi F., Adibpor A.H. Microstructural and tribological properties of A356 based surface hybrid composite produced by friction stir processing. Mater. Res. Express. 2018;6:016501. doi: 10.1088/2053-1591/aae0c5. DOI

Surface engineering of light alloys: Aluminium, magnesium and titanium alloys. Int. Heat Treat. Surf. Eng. 2010;4:57. doi: 10.1179/174951410X12572442577309. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...