The Effect of Heat Treatment on the Tribological Properties and Room Temperature Corrosion Behavior of Fe-Cr-Al-Based OPH Alloy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-01641S
Grantová Agentura České Republiky
PubMed
33266309
PubMed Central
PMC7730592
DOI
10.3390/ma13235465
PII: ma13235465
Knihovny.cz E-zdroje
- Klíčová slova
- Fe–Cr–Al, corrosion, heat treatment, oxide precipitation hardened (OPH), tribology, wearing,
- Publikační typ
- časopisecké články MeSH
The microstructure, mechanical, tribological, and corrosion properties of Fe-Cr-Al-Y-based oxide-precipitation-hardened (OPH) alloy at room temperature are presented. Two OPH alloys with a composition of 0.72Fe-0.15Cr-0.06Al-0.03Mo-0.01Ta-0.02Y2O3 and 0.03Y2O3 (wt.%) were prepared by mechanical alloying with different milling times. After consolidation by hot rolling, the alloys presented a very fine microstructure with a grain size of approximately 180 nm. Such a structure is relatively brittle, and its mechanical properties are enhanced by heat treatment. Annealing was performed at three temperatures (1000 °C, 1100 °C, and 1200 °C), with a holding time from 1 to 20 h. Tensile testing, wear testing, and corrosion testing were performed to evaluate the effect of heat treatment on the behavior and microstructural properties. The grain size increased almost 10 times by heat treatment, which influenced the mechanical properties. The ultimate tensile strength increased up to 300% more compared to the initial state. On the other hand, heat treatment has a negative effect on corrosion and wear resistance.
Zobrazit více v PubMed
Auger M.A., Leguey T., Muñoz A., Monge M.A., De Castro V., Fernández P., Garcés G., Pareja R. Microstructure and mechanical properties of ultrafine-grained Fe–14Cr and ODS Fe–14Cr model alloys. J. Nucl. Mater. 2011;417:213–216. doi: 10.1016/j.jnucmat.2010.12.060. DOI
Lee J.H. Development of oxide dispersion strengthened ferritic steels with and without aluminum. Front. Energy. 2012;6:29–34. doi: 10.1007/s11708-012-0178-x. DOI
Takaya S., Furukawa T., Müller G., Heinzel A., Jianu A., Weisenburger A., Aoto K., Inoue M., Okuda T., Abe F., et al. Al-containing ODS steels with improved corrosion resistance to liquid lead–bismuth. J. Nucl. Mater. 2012;428:125–130. doi: 10.1016/j.jnucmat.2011.06.046. DOI
Nagini M., Jyothirmayi A., Vijay R., Rao T.N., Reddy A.V., Rajulapati K.V., Sundararajan G. Influence of Dispersoids on Corrosion Behavior of Oxide Dispersion-Strengthened 18Cr Steels made by High-Energy Milling. J. Mater. Eng. Perform. 2015;25:577–586. doi: 10.1007/s11665-015-1859-5. DOI
Lu Z., Faulkner R., Riddle N., Martino F., Yang K. Effect of heat treatment on microstructure and hardness of Eurofer 97, Eurofer ODS and T92 steels. J. Nucl. Mater. 2009;386:445–448. doi: 10.1016/j.jnucmat.2008.12.152. DOI
Kubena I., Fournier B., Kruml T. Effect of microstructure on low cycle fatigue properties of ODS steels. J. Nucl. Mater. 2012;424:101–108. doi: 10.1016/j.jnucmat.2012.02.011. DOI
Siska F., Stratil L., Hadraba H., Fintová S., Kubena I., Zalezak T., Bartkova D. High temperature deformation mechanisms in the 14% Cr ODS alloy. Mater. Sci. Eng. A. 2017;689:34–39. doi: 10.1016/j.msea.2017.02.037. DOI
Stratil L., Siska F., Hadraba H., Bartkova D., Fintova S., Puchy V. Fracture behavior of the ODS steels prepared by internal oxidation. Fusion Eng. Des. 2017;124:1108–1111. doi: 10.1016/j.fusengdes.2017.03.008. DOI
Wang L.-X., Song C.-J., Sun F.-M., Li L.-J., Zhai Q.-J. Microstructure and mechanical properties of 12wt.% Cr ferritic stainless steel with Ti and Nb dual stabilization. Mater. Des. 2009;30:49–56. doi: 10.1016/j.matdes.2008.04.040. DOI
Chao J., Rementeria R., Aranda M., Capdevila C., González-Carrasco J.L. Comparison of Ductile-to-Brittle Transition Behavior in Two Similar Ferritic Oxide Dispersion Strengthened Alloys. Materials. 2016;9:637. doi: 10.3390/ma9080637. PubMed DOI PMC
Khalaj O., Jirková H., Mašek B., Hassasroudsari P., Studecký T., Svoboda J. Using thermomechanical treatments to improve the grain growth of new-generation ODS alloys. Mater. Tehnol. 2018;52:475–482. doi: 10.17222/mit.2017.148. DOI
Zakine C., Prioul C., François D. Creep behaviour of ODS steels. Mater. Sci. Eng. A. 1996;219:102–108. doi: 10.1016/S0921-5093(96)10415-9. DOI
Palm M. Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. Intermetallics. 2005;13:1286–1295. doi: 10.1016/j.intermet.2004.10.015. DOI
Bártková D., Šmíd M., Mašek B., Svoboda J., Šiška F. Kinetic study of static recrystallization in an Fe–Al–O ultra-fine-grained nanocomposite. Philos. Mag. Lett. 2017;97:379–385. doi: 10.1080/09500839.2017.1378445. DOI
Khalaj O., Jirková H., Janda T., Kučerová L., Studecký T., Svoboda J. Improving the high-temperature properties of a new generation of Fe-Al-O oxide-precipitation-hardened steels. Mater. Tehnol. 2019;53:495–504. doi: 10.17222/mit.2018.227. DOI
Khalaj O., Jirková H., Jeníček Š., Račický A., Svoboda J. Annealing effects on the microstructure and thermomechanical properties of New-Generation ODS Alloys. Key Eng. Mater. 2020;834:67–74. doi: 10.4028/www.scientific.net/KEM.834.67. DOI
Khalaj O., Jirková H., Opatová K., Svoboda J. Microstructural and Hardness Evolution of New Developed OPH Steels. Solid State Phenom. 2019;294:92–97. doi: 10.4028/www.scientific.net/SSP.294.92. DOI
Khalaj O., Mašek B., Jirková H. Investigation on new creep- and oxidation-resistant materials. Mater. Tehnol. 2015;49:645–651. doi: 10.17222/mit.2014.210. DOI
Khalaj O., Mašek B., Jirková H., Svoboda J. Experimental Study on Thermomechanical Properties of New-Generation ODS Alloys. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2017;11:456–459.
Khalaj O., Saebnoori E., Jirková H., Chocholatý O., Svoboda J. High Temperature and Corrosion Properties of A Newly Developed Fe-Al-O Based OPH Alloy. Metals. 2020;10:167. doi: 10.3390/met10020167. PubMed DOI PMC
Svoboda J., Horník V., Stratil L., Hadraba H., Mašek B., Khalaj O., Jirková H. Microstructure Evolution in ODS Alloys with a High-Volume Fraction of Nano Oxides. Metals. 2018;8:1079. doi: 10.3390/met8121079. DOI
Mašek B., Khalaj O., Jirková H., Svoboda J., Bublíková D. Influence of thermomechanical treatment on the grain-growth behaviour of new Fe-Al based alloys with fine Al2O3 precipitates. Mater. Tehnol. 2017;51:759–768. doi: 10.17222/mit.2016.232. DOI
Mašek B., Khalaj O., Nový Z., Kubina T., Jirková H., Svoboda J., Štádler C. Behaviour of new ODS alloys under single and multiple deformation. Mater. Tehnol. 2016;50:891–898. doi: 10.17222/mit.2015.156. DOI
Khalaj O., Ghobadi M., Zarezadeh A., Saebnoori E., Jirková H., Chocholaty O., Svoboda J. Potential role of machine learning techniques for modeling the hardness of OPH steels. Mater. Today Commun. 2020:101806. doi: 10.1016/j.mtcomm.2020.101806. DOI
Noh S., Choi B.-K., Han C.-H., Kang S.H., Jang J., Jeong Y.-H., Kim T.K. Effects Of Heat Treatments On Microstructures And Mechanical Properties of Dual Phase Ods Steels For High Temperature Strength. Nucl. Eng. Technol. 2013;45:821–826. doi: 10.5516/NET.02.2013.529. DOI
Sun W., Cai Q., Luo Q., He J., Gu J.-J. Effects of diffusion annealing on microstructure and anti-oxidation property of hot-dipped aluminum coating on 45 steel. Trans. Mater. Heat Treat. 2011;32:1–4.
Svoboda J., Ecker W., Razumovskiy V., Zickler G., Fischer F.D. Kinetics of interaction of impurity interstitials with dislocations revisited. Prog. Mater. Sci. 2019;101:172–206. doi: 10.1016/j.pmatsci.2018.10.001. DOI
Chlupová A., Šulák I., Svoboda J. High Temperature Cyclic Plastic Response of New-Generation ODS Alloy. Metals. 2020;10:804. doi: 10.3390/met10060804. DOI
Dymáček P., Svoboda J., Jirková H., Stratil L., Horník V. Microstructure evolution and creep strength of new-generation oxide dispersion strengthened alloys with high volume fraction of nano-oxides. Procedia Struct. Integr. 2019;17:427–433. doi: 10.1016/j.prostr.2019.08.056. DOI
Svoboda J., Luptáková N., Jarý M., Dymáček P. Influence of Hot Consolidation Conditions and Cr-Alloying on Microstructure and Creep in New-Generation ODS Alloy at 1100 °C. Materials. 2020;13:5070. doi: 10.3390/ma13225070. PubMed DOI PMC
Ralston K., Birbilis N. Effect of Grain Size on Corrosion: A Review. Corrosion. 2010;66:075005. doi: 10.5006/1.3462912. DOI
Yang J., Guo Y., Zai W., Ma S., Dong L., Li G. Preparation and properties of the anodized film on Fe-Cr-Al alloy surface. Anti Corros. Methods Mater. 2020;67:379–386. doi: 10.1108/ACMM-11-2019-2209. DOI
Olsson C.-O., Landolt D. Passive films on stainless steels—Chemistry, structure and growth. Electrochim. Acta. 2003;48:1093–1104. doi: 10.1016/S0013-4686(02)00841-1. DOI
Khalaj O., Saebnoori E., Jirková H., Chocholaty O., Svoboda J. Corrosion Behavior and Mechanical Properties of New Developed Oxide Precipitation Hardened Steels. Key Eng. Mater. 2020;846:87–92. doi: 10.4028/www.scientific.net/KEM.846.87. DOI
Pelegrini L., Bittencourt S.D., Pauletti P., De Verney J.C.K., Dias M.D.M., Schaeffer L. Influence of Milling Time During the Mechanical Alloying Process on the Properties of Fe-3Si-0.75P Alloy. Mater. Res. 2015;18:1070–1076. doi: 10.1590/1516-1439.021715. DOI
Fellah M., Labaïz M., Assala O., Dekhil L., Taleb A., Rezag H., Iost A. Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb Alloys for Total Hip Prosthesis. Adv. Tribol. 2014;2014:1–13. doi: 10.1155/2014/451387. DOI
Adibpour A.H., Ebrahimzadeh I., Gharavi F., Adibpor A.H. Microstructural and tribological properties of A356 based surface hybrid composite produced by friction stir processing. Mater. Res. Express. 2018;6:016501. doi: 10.1088/2053-1591/aae0c5. DOI
Surface engineering of light alloys: Aluminium, magnesium and titanium alloys. Int. Heat Treat. Surf. Eng. 2010;4:57. doi: 10.1179/174951410X12572442577309. DOI
Development of Machine Learning Models to Evaluate the Toughness of OPH Alloys