Platinum anniversary: virus and lichen alga together more than 70 years
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25789995
PubMed Central
PMC4366220
DOI
10.1371/journal.pone.0120768
PII: PONE-D-14-47293
Knihovny.cz E-zdroje
- MeSH
- Caulimovirus klasifikace genetika izolace a purifikace MeSH
- Chlorophyta virologie MeSH
- DNA virů chemie izolace a purifikace MeSH
- elektronová mikroskopie MeSH
- molekulární sekvence - údaje MeSH
- sekvence nukleotidů MeSH
- sekvenční seřazení MeSH
- výročí a významné události MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA virů MeSH
- zlato MeSH
Trebouxia aggregata (Archibald) Gärtner (phylum Chlorophyta, family Trebouxiaceae), a lichen symbiotic alga, has been identified as host of the well-known herbaceous plant virus Cauliflower mosaic virus (CaMV, family Caulimoviridae). The alga had been isolated from Xanthoria parietina more than 70 years ago and has been maintained in a collection since that time. The CaMV detected in this collection entry has now been completely sequenced. The virus from T. aggregata is mechanically transmissible to a herbaceous host and induces disease symptoms there. Its genome differs by 173 nt from the closest European CaMV-D/H isolate from cauliflower. No site under positive selection was found on the CaMV genome from T. aggregata. We therefore assume that the virus's presence in this alga was not sufficiently long to fix any specific changes in its genome. Apart from this symbiotic alga, CaMV capsid protein sequences were amplified from many other non-symbiotic algae species maintained in a collection (e.g., Oonephris obesa, Elliptochloris sp., Microthamnion kuetzingianum, Chlorella vulgaris, Pseudococcomyxa sp.). CaMV-free Chlorella vulgaris was treated with CaMV to establish virus infection. The virus was still detected there after five passages. The virus infection is morphologically symptomless on Chlorella algae and the photosynthesis activity is slightly decreased in comparison to CaMV-free alga culture. This is the first proof as to the natural presence of CaMV in algae and the first demonstration of algae being artificially infected with this virus.
Zobrazit více v PubMed
Zaady E, Kuhn U, Wilske B, Sandoval-Soto L, Kesselmeier J. Patterns of CO2 exchange in biological soil crusts of successional age. Soil Biol Biochem. 2000; 32: 959–966.
Weber MX, Medina M. The role of microalgal symbionts (Symbiodinium) in holobiont physiology. Adv Bot Res. 2012; 64: 119–140.
Friedl T, Büdel B. Photobionts In: Nash TH III, editor: Lichen Biology. Second Edition Cambridge University Press, Cambridge; 2008. pp. 9–26.
Wilhelm SW, Metteson AR. Freshwater and marine virioplankton: a brief overview of commonalities and differences. Freshwater Biol. 2008; 53: 1076–1089
Bergh Ø, Børsheim KY, Bratbak G, Heldal M. High abundance of viruses found in aquatic environments. Nature. 1989; 340: 467–468 PubMed
Mayer JA, Taylor FJR. A virus which lyses the marine nanoflagellate Micromonas pusilla. Nature. 1979; 281: 299–301
Meints RH, Van Etten JL, Kuczmarski D, Lee K, Ang B. Viral infection of the symbiotic Chlorella-like alga present in Hydra viridis. Virology. 1981; 113: 698–703 PubMed
Yamada T, Onimatsu H, Van Etten JL. Chlorella viruses. Adv Virus Res. 2006; 66: 293–336. PubMed PMC
Van Etten JL, Dunigan DD. Chloroviruses: not your everyday plant virus. Trends Plant Sci. 2012; 17: 1–8. 10.1016/j.tplants.2011.10.005 PubMed DOI PMC
Dunigan DD, Fitzerald LA, Van Etten JL. Phycodnaviruses: A peek at genetic diversity. Virus Res. 2006; 117: 119–132 PubMed
Wilson WH, Tarran GA, Schroeder D, Cox M, Oke J, Malin G. Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel. J Mar Biol Ass UK. 2002; 82: 369–377.
Tarutani K, Nagasaki K, Yamaguici M. Viral impacts on total abundance and clonal composition of the harmful bloom-forming phytoplankton Hetersigma akashiwo. Appl Environ Microbiol. 2000; 66: 4916–4920. PubMed PMC
Guiry MD, Guiri GM. AlgaeBase World-wide electronic publication, National University of Ireland, Galway: 2014; Available: http://www.algaebase.org
Lawrence J. Viral contamination of algal cultures In Andersen R.A. Algal culturing techniques. Elsevier Academic Press, Amsterdam, 2005; pp. 365–388.
Polischuk V, Budzanivska I, Shevchenko T, Oliynik S. Evidence for plant viruses in the region of Argentina Islands, Antarctica. FEMS Microbiol Ecol. 2007; 59: 409–417. PubMed
Harris EH. Chlamydomonas as a model organism. Annu Rev Plant Phys. 2001; 52: 363–406. PubMed
Martínez F, Marqués J, Salvador ML, Darós J. Mutational analysis of eggplant latent viroid processing in Chlamydomonas reinhardtii chloroplast J Gen Virol. 2009; 90: 3057–3065. 10.1099/vir.0.013425-0 PubMed DOI
Petrzik K, Vondrák J, Barták M, Peksa O, Kubešová O. Lichens—a new source or yet unknown host of herbaceous plant viruses? Eur J Plant Pathol. 2014; 138: 549–559.
Babich H, Stotzky G. Reductions in inactivation rates of bacteriophages by clay minerals in lake water. Water Res. 1980; 14: 185–187. PubMed
Syngouna VI, Chrysikopoulos CV. Interaction between viruses and clays in static and dynamic batch systems. Environ Sci Technol. 2010; 44: 4539–4544. 10.1021/es100107a PubMed DOI
Rosario K, Nilsson C, Lim YW, Ruan Y, Breitbart M. Metagenomic analysis of viruses in reclaimed water. Environ Microbiol. 2009; 11: 2806–2820. 10.1111/j.1462-2920.2009.01964.x PubMed DOI
Franck A, Guilley H, Jonard G, Richards K, Hirth L. Nucleotide sequence of cauliflower mosaic virus DNA. Cell. 1980; 21: 285–294. PubMed
Blanc S, Hebrard E, Drucker M, Froissart R. Molecular aspects of virus-vector interactions: Caulimoviruses In: Harris K, Duffus JE, Smith OP, editors. Virus-Insect-Plant Interactions. San Diego, CA: Academic Press; 2001; pp. 143–167.
Qiu SG, Wintermantel WM, Sha Y, Scholez JE. Ligh-dependent systemic infection of solanaceous species by Cauliflower mosaic virus can be conditioned by a viral gene enccoding an aphid transmission factor. Virology. 1997; 227: 180–188. PubMed
Piqué M, Mougeot J-L, Geldreich A, Guidasci T, Mesnard J-M, Lebeurier G, et al. Sequence of a cauliflower mosaic virus strain infecting solanaceous plants. Gene. 1995; 155: 305–306. PubMed
Yasaka R, Nguyen HD, Ho SYW, Duchêne S, Korkmaz S, Katis N, et al. The temporal evolution and global spread of Cauliflower mosaic virus, a plant pararetrovirus. Plos ONE. 2014; 9: e85641 10.1371/journal.pone.0085641 PubMed DOI PMC
Brown RM Jr., Bold HC. Comparative studies of the algal genera Tetracystis and Chlorococcum Phycological Studies V. University of Texas Publications; 1964; 6417: 1–213.
Shepherd RJ. Cauliflower mosaic virus. CMI AAB Descriptions of Plant Viruses. 1981; No.: 243.
Hull RH, Shepherd RJ, Harvey JD. Cauliflower mosaic virus: an improved purification procedure and some properties of the virus particles. J Gen Virol. 1976; 31: 93–100.
Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P. RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics. 2010; 26: 2462–2463. 10.1093/bioinformatics/btq467 PubMed DOI PMC
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28: 2731–2739. 10.1093/molbev/msr121 PubMed DOI PMC
Huson DH, Bryant D. Application of Phylogenetic Networks in Evolutionary Studies. Mol Biol Evol. 2006; 23: 254–267. PubMed
Pietschmann SM, Hausmann EHS, Gelderblom HR. Immunogold labeling of viruses in situ Colloidal gold: Principles, methods, and applications. Academic Press; 1989; pp. 255–284.
Nedbal L, Soukupová J, Kaftan D, Whitmarsh J, Trtílek M. Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynth Res. 2000; 66: 3–12. PubMed
Maxwell K, Johnson GN. Chlorophyll fluorescence—a practical guide. J Exp Bot. 2000; 51: 659–668. PubMed
Roháček K, Barták M. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica. 1999; 37: 339–363.
Quispel A. The mutual relations between algae and fungi in lichens. Rec Trav Bot Néerl. 1943; 40: 413–541.
Špak J. Characteristics of the Czechoslovak isolates of Cauliflower mosaic virus from the brassicas. Ochr Rostl. 1989; 25: 177–184.
Petrzik K, Beneš V, Mráz I, Fránová J, Ansorge W, Špak J. Strawberry vein banding virus—definitive member of the genus Caulimovirus. Virus Genes. 1998; 16: 303–305. PubMed
Froissart R, Roze D, Uzest M, Galibert L, Blanc S, Michalakis Y. Recombination every day: Abundant recombination in a virus during a single multi-cellular host infection. PLoS Biol. 2005; 3: e89 PubMed PMC
Zfang X, Xiang Y, Dunigan DD, Klose T, Chipman PR, Van Etten JL, et al. Three-dimensional structure and function of the Paramecieum bursaria chlorella virus capsid. Proc Natl Acad Sci USA. 2011; 108: 14837–14842. 10.1073/pnas.1107847108 PubMed DOI PMC
Van Etten JL, Dunigan DD. Chloroviruses: not your everyday plant virus. Trends Plant Sci. 2012; 17: 1–8. 10.1016/j.tplants.2011.10.005 PubMed DOI PMC
Chen MH, Sheng J, Hind G, Handa AK, Citovsky V. Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterase is required for viral cell-to-cell movement. EMBO J. 19; 913–920. PubMed PMC
CABI. Cauliflower mosaic virus. In: Crop Protection Compendium, Wallingford, UK. CAB International. 2014. www.cabi.org/cpc
Namba R, Sylvester ES. Transmission of cauliflower mosaic virus by the green peach, turnip, cabbage, and pea aphids. J Econ Entomol. 1981; 74: 546–551.
Marco S. Turnip mosaic and cauliflower mosaic viruses in Israel. Phytopathol Mediterr. 1985; 24: 211–212.
Farzadfar S, Pourrahim R. Biological and molecular variation of Iranian Cauliflower mosaic virus (CaMV) isolates. Virus Genes. 2013; 47: 347–356. 10.1007/s11262-013-0948-5 PubMed DOI
Whon T, Kim M-S, Roh S W, Shin N-R, Lee H-W, Bae J-W. Metagenomic characterization of airborne viral DNA diversity in the near-surface atmosphere. J Virol. 2012; 86: 8221–8231. 10.1128/JVI.00293-12 PubMed DOI PMC
Galloway DJ. Lichen biogeography In: Nash TH III, editor. Lichen biology, Cambridge University press, 2008; pp. 315–335. 10.1109/IEMBS.2008.4649153 DOI
Ahmadjian V. The lichen symbiosis. New York: John Wiley; 1993.
Meier FA, Scherrer S, Honegger R. Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. Biol J Linn Soc. 2002; 76: 259–268.
Khelifa M, Massé D, Blanc S, Drucker M. Evaluation of the minimal replication time of Cauliflower mosaic virus in different hosts. Virology. 2010; 396: 238–245. 10.1016/j.virol.2009.09.032 PubMed DOI
Allen MM, Hutchison F. Effect of some environmental factors on cyanophage AS-1 development in Anacystis nidulans. Arch Microbiol. 1976; 110: 55–60. PubMed
Juneau P, Lawrence JE, Suttle CA, Harrison PJ. Effects of viral infection on photosynthetic processes in the bloom-forming alga Heterosigma akashiwo. Aquat Microb Ecol. 2003; 31: 9–17.
Mackenzie JJ, Haselkorn R. Photosynthesis and the development of blue-green algal virus SM-1. Virology. 1972; 49: 517–521. PubMed
Van Etten JL, Burbank DE, Xia Y, Meints RH. Growth cycle of a virus, PBCV-1, that infects Chlorella-like algae. Virology. 1983; 126: 117–125. PubMed
GENBANK
KF498706, KF550287, KM502556, KM502557, KM502558, KM502559, KM502560, KM502561, KM502562, KP432258, KP432259