Direct detection of stringent alarmones (pp)pGpp using malachite green

. 2024 ; 11 () : 312-320. [epub] 20240805

Status PubMed-not-MEDLINE Jazyk angličtina Země Rakousko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39119257

The alarmone (p)ppGpp serves as the signalling molecule for the bacterial universal stringent response and plays a crucial role in bacterial virulence, persistence, and stress adaptation. Consequently, there is a significant focus on developing new drugs that target and modulate the levels of (p)ppGpp as a potential strategy for controlling bacterial infections. However, despite the availability of various methods for detecting (p)ppGpp, a simple and straightforward detection method is needed. In this study, we demonstrated that malachite green, a well-established compound used for phosphate detection, can directly detect (p)ppGpp and its analogues esp., pGpp. By utilizing malachite green, we identified three new inhibitors of the hydrolase activity of SpoT, one of the two RelA-SpoT homolog (RSH) proteins responsible for making and hydrolyzing (p)ppGpp in Escherichia coli. These findings highlight the convenience and practicality of malachite green, which can be widely employed in high-throughput studies to investigate (pp)pGpp in vitro and discover novel regulators of RSH proteins.

Zobrazit více v PubMed

Cashel M, Gallant J. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature. 1969;221(5183):838–841. doi: 10.1038/221838a0. PubMed DOI

Dalebroux Z D, Svensson S L, Gaynor E C, Swanson M S. ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev. 2010;74(2):171–199. doi: 10.1128/MMBR.00046-09. PubMed DOI PMC

Harms A, Maisonneuve E, Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science. 2016;354(6318):4268–4268. doi: 10.1126/science.aaf4268. PubMed DOI

Hauryliuk V, Atkinson G C, Murakami K S, Tenson T, Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol. 2015;13(5):298–309. doi: 10.1038/nrmicro3448. PubMed DOI PMC

Pacios O, Blasco L, Bleriot I, Fernandez-Garcia L, Ambroa A, López M, Bou G, Cantón R, Garcia-Contreras R, Wood T K, Tomás M. and Its Role in Bacterial Persistence: New Challenges. Antimicrob Agents Ch. 2020;64(10):ppGpp–ppGpp. doi: 10.1128/AAC.01283-20. PubMed DOI PMC

Zhang Y, Zborníková E, Rejman D, Gerdes K. Novel (p)ppGpp Binding and Metabolizing Proteins of Escherichia coli. mBio. 2018;9(2):2188–2205. doi: 10.1128/mBio.02188-17. PubMed DOI PMC

Wang B, Dai P, Ding D, Rosario A Del, Grant R A, Pentelute B L, Laub M T. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp. Nat Chem Biol. 2019;15(2):141–150. doi: 10.1038/s41589-018-0183-4. PubMed DOI PMC

Traxler M F, Summers S M, Nguyen H-T, Zacharia V M, Smith J T, Conway T. The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol. 2008;68(5):1128–1148. doi: 10.1111/j.1365-2958.2008.06229.x. PubMed DOI PMC

Dalebroux Z D, Swanson M S. ppGpp: magic beyond RNA polymerase. Nat Rev Microbiol. 2012;10(3):203–212. doi: 10.1038/nrmicro2720. PubMed DOI

Korch S B, Henderson T A, Hill T M. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol Microbiol. 2003;50(4):1199–1213. doi: 10.1046/j.1365-2958.2003.03779.x. PubMed DOI

Rodionov D G, Ishiguro E E. Direct Correlation between Overproduction of Guanosine 3',5'-Bispyrophosphate (Ppgpp) and Penicillin Tolerance in Escherichia-Coli. J Bacteriol. 1995;177(15):4224–4229. doi: 10.1128/jb.177.15.4224-4229.1995. PubMed DOI PMC

Atkinson G C, Tenson T, Hauryliuk V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One. 2011;6(8):23479–23479. doi: 10.1371/journal.pone.0023479. PubMed DOI PMC

Sy J, Lipmann F. Identification of the synthesis of guanosine tetraphosphate (MS I) as insertion of a pyrophosphoryl group into the 3'-position in guanosine 5'-diphosphate. Proc Natl Acad Sci U S A. 1973;70(2):306–309. doi: 10.1073/pnas.70.2.306. PubMed DOI PMC

An G, Justesen J, Watson R J, Friesen J D. Cloning the spoT gene of Escherichia coli: identification of the spoT gene product. J Bacteriol. 1979;137(3):1100–1110. doi: 10.1128/jb.137.3.1100-1110.1979. PubMed DOI PMC

Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem. 1991;266(9):5980–5990. doi: 10.1016/s0021-9258(19)67694-5. PubMed DOI

Heinemeyer E-A, Geis M, Richter D. Degradation of Guanosine 3′-diphosphate 5′-diphosphate in vitro by the spoT Gene Product of Escherichia coli. Eur J Biochem. 1978;89(1):125–131. doi: 10.1111/j.1432-1033.1978.tb20904.x. PubMed DOI

Beljantseva J, Kudrin P, Jimmy S, Ehn M, Pohl R, Varik V, Tozawa Y, Shingler V, Tenson T, Rejman D, Hauryliuk V. Molecular mutagenesis of ppGpp: turning a RelA activator into an inhibitor. Sci Rep. 2017;7:41839–41839. doi: 10.1038/srep41839. PubMed DOI PMC

Wexselblatt E, Oppenheimer-Shaanan Y, Kaspy I, London N, Schueler-Furman O, Yavin E, Glaser G, Katzhendler J, Ben-Yehuda S. Relacin, a novel antibacterial agent targeting the Stringent Response. PLoS Pathog. 2012;8(9):1002925–1002925. doi: 10.1371/journal.ppat.1002925. PubMed DOI PMC

Dlc Fuente-Núñez, Reffuveille F, Haney E F, Straus S K, Hancock REW. Broad-Spectrum Anti-biofilm Peptide That Targets a Cellular Stress Response. PLOS Pathogens. 2014;10(5):1004152–1004152. doi: 10.1371/journal.ppat.1004152. PubMed DOI PMC

Dutta N K, Klinkenberg L G, Vazquez M J, Segura-Carro D, Colmenarejo G, Ramon F, Rodriguez-Miquel B, Mata-Cantero L, Francisco E Porras-De, Chuang Y M, Rubin H, Lee J J, Eoh H, Bader J S, Perez-Herran E, Mendoza-Losana A, Karakousis P C. Inhibiting the stringent response blocks entry into quiescence and reduces persistence. Sci Adv. 2019;5(3) doi: 10.1126/sciadv.aav2104. PubMed DOI PMC

Viducic D, Ono T, Murakami K, Susilowati H, Kayama S, Hirota K, Miyake Y. Functional Analysis of spoT, relA and dksA Genes on Quinolone Tolerance in Pseudomonas aeruginosa under Nongrowing Condition. Microbiol Immunol. 2006;50(4):349–357. doi: 10.1111/j.1348-0421.2006.tb03793.x. PubMed DOI

Sun W, Roland K L, Branger C G, Kuang X, Iii R C. The Role of relA and spoT in Yersinia pestis KIM5+ Pathogenicity. PLOS ONE. 2009;4(8):6720–6720. doi: 10.1371/journal.pone.0006720. PubMed DOI PMC

Riesenberg D. A radioimmunoassay for (p)ppGpp and its application to Streptomyces hygroscopicus. J Basic Microbiol. 1985;25(2):127–140. doi: 10.1002/jobm.3620250209. PubMed DOI

Potrykus K, Thomas N E, Bruhn-Olszewska B, Sobala M, Dylewski M, James T, Cashel M. Estimates of RelSeq, Mesh1, and SAHMex Hydrolysis of (p)ppGpp and (p)ppApp by Thin Layer Chromatography and NADP/NADH Coupled Assays. Front Microbiol. 2020;11:581271–581271. doi: 10.3389/fmicb.2020.581271. PubMed DOI PMC

Varik V, Oliveira Sra, Hauryliuk V, Tenson T. HPLC-based quantification of bacterial housekeeping nucleotides and alarmone messengers ppGpp and pppGpp. Sci Rep. 2017;7(1):11022–11022. doi: 10.1038/s41598-017-10988-6. PubMed DOI PMC

Rong M, Ye J, Chen B, Wen Y, Deng X, Liu Z-Q. Ratiometric fluorescence detection of stringent ppGpp using Eu-MoS2 QDs test paper. Sensors and Actuators B: Chemical. 2020;309:127807–127807. doi: 10.1016/j.snb.2020.127807. DOI

Zheng L L, Huang C Z. Selective and sensitive colorimetric detection of stringent alarmone ppGpp with Fenton-like reagent. Analyst. 2014;139(23):6284–6289. doi: 10.1039/c4an01632g. PubMed DOI

Itaya K, Ui M. A new micromethod for the colorimetric determination of inorganic phosphate. Clinica Chimica Acta. 1966;14(3):361–366. doi: 10.1016/0009-8981(66)90114-8. PubMed DOI

Yang J, Anderson B W, Turdiev A, Turdiev H, Stevenson D M, Amador-Noguez D, Lee V T, Wang J D. The nucleotide pGpp acts as a third alarmone in Bacillus, with functions distinct from those of (p) ppGpp. Nat Commun. 2020;11(1):5388–5388. doi: 10.1038/s41467-020-19166-1. PubMed DOI PMC

Harinarayanan R, Murphy H, Cashel M. Synthetic growth phenotypes of Escherichia coli lacking ppGpp and transketolase A (tktA) are due to ppGpp-mediated transcriptional regulation of tktB. Mol Microbiol. 2008;69(4):882–894. doi: 10.1111/j.1365-2958.2008.06317.x. PubMed DOI PMC

Jh Z, Td C, Kr O. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen. 1999;4(2):67–73. doi: 10.1177/108705719900400206. PubMed DOI

Craveri R, Coronelli C, Pagani H, Sensi P. Thermorubin, a New Antibiotic from a Thermoactinomycete. Clin Med Winnetka, Ill. 1964;71(3):15446134–15446134. PubMed

Parajuli N P, Emmerich A, Mandava C S, Pavlov M Y, Sanyal S. Antibiotic thermorubin tethers ribosomal subunits and impedes A-site interactions to perturb protein synthesis in bacteria. Nat Commun. 2023;14(1):918–918. doi: 10.1038/s41467-023-36528-7. PubMed DOI PMC

Lin F L, Wishnia A. The protein synthesis inhibitor thermorubin. 1. Nature of the thermorubin-ribosome complex. Biochemistry. 1982;21(3):477–483. doi: 10.1021/bi00532a010. PubMed DOI

Pirali G, Somma S, Lancini G C, Sala F. Inhibition of peptide chain initiation in Escherichia coli by thermorubin. Biochim Biophys Acta. 1974;366(3):310–318. doi: 10.1016/0005-2787(74)90291-3. PubMed DOI

Cavalleri B, Turconi M, Pallanza R. Synthesis and antibacterial activity of some derivatives of the antibiotic thermorubin. J Antibiot. 1985;38(12):1752–1760. doi: 10.7164/antibiotics.38.1752. PubMed DOI

Uzan M, Danchin A. A rapid test for the rel A mutation in E. coli. Biochem Biophys Res Commun. 1976;69(3):90939–90945. doi: 10.1016/0006-291x(76)90939-6. PubMed DOI

Grucela P K, Zhang Y E. Basal level of ppGpp coordinates Escherichia coli cell heterogeneity and ampicillin resistance and persistence. Microbial Cell. 2023;10(11):248–260. doi: 10.15698/mic2023.11.808. PubMed DOI PMC

Baykov A A, Evtushenko O A, Avaeva S M. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem. 1988;171(2):266–270. doi: 10.1016/0003-2697(88)90484-8. PubMed DOI

Bhasikuttan A C, Mohanty J, Pal H. Interaction of malachite green with guanine-rich single-stranded DNA: preferential binding to a G-quadruplex. Angew Chem Int Edit. 2007;46(48):9305–9307. doi: 10.1002/anie.200703251. PubMed DOI

Steinchen W, Bange G. The magic dance of the alarmones (p) Mol Microbiol. 2016;101(4):531–544. doi: 10.1111/mmi.13412. PubMed DOI

Giammarinaro P I, Young Mkm, Steinchen W, Mais C N, Hochberg G, Yang J, Stevenson D M, Amador-Noguez D, Paulus A, Wang J D, Bange G. Diadenosine tetraphosphate regulates biosynthesis of GTP in Bacillus subtilis. Nat Microbiol. 2022;7(9):1442–1452. doi: 10.1038/s41564-022-01193-x. PubMed DOI PMC

Fung D K, Yang J, Stevenson D M, Amador-Noguez D, Wang J D. Small Alarmone Synthetase SasA Expression Leads to Concomitant Accumulation of pGpp, ppApp, and AppppA in Bacillus subtilis. Front Microbiol. 2020;11:2083–2083. doi: 10.3389/fmicb.2020.02083. PubMed DOI PMC

Ahmad S, Wang B, Walker M D, Tran H R, Stogios P J, Savchenko A, Grant R A, Mcarthur A G, Laub M T, Whitney J C. An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature. 2019;575(7784):674–678. doi: 10.1038/s41586-019-1735-9. PubMed DOI PMC

Horvatek P, Salzer A, Hanna Amf, Gratani F L, Keinhörster D, Korn N, Borisova M, Mayer C, Rejman D, Mäder U, Wolz C. Inducible expression of (pp)pGpp synthetases in Staphylococcus aureus is associated with activation of stress response genes. Plos Genetics. 2020;16(12):1009282–1009282. doi: 10.1371/journal.pgen.1009282. PubMed DOI PMC

Sebaugh J L. Guidelines for accurate EC50/IC50 estimation. Pharmaceutical Statistics. 2011;10(2):128–134. doi: 10.1002/pst.426. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...