Novel (p)ppGpp Binding and Metabolizing Proteins of Escherichia coli

. 2018 Mar 06 ; 9 (2) : . [epub] 20180306

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29511080

The alarmone (p)ppGpp plays pivotal roles in basic bacterial stress responses by increasing tolerance of various nutritional limitations and chemical insults, including antibiotics. Despite intensive studies since (p)ppGpp was discovered over 4 decades ago, (p)ppGpp binding proteins have not been systematically identified in Escherichia coli We applied DRaCALA (differential radial capillary action of ligand assay) to identify (p)ppGpp-protein interactions. We discovered 12 new (p)ppGpp targets in E. coli that, based on their physiological functions, could be classified into four major groups, involved in (i) purine nucleotide homeostasis (YgdH), (ii) ribosome biogenesis and translation (RsgA, Era, HflX, and LepA), (iii) maturation of dehydrogenases (HypB), and (iv) metabolism of (p)ppGpp (MutT, NudG, TrmE, NadR, PhoA, and UshA). We present a comprehensive and comparative biochemical and physiological characterization of these novel (p)ppGpp targets together with a comparative analysis of relevant, known (p)ppGpp binding proteins. Via this, primary targets of (p)ppGpp in E. coli are identified. The GTP salvage biosynthesis pathway and ribosome biogenesis and translation are confirmed as targets of (p)ppGpp that are highly conserved between E. coli and Firmicutes In addition, an alternative (p)ppGpp degradative pathway, involving NudG and MutT, was uncovered. This report thus significantly expands the known cohort of (p)ppGpp targets in E. coliIMPORTANCE Antibiotic resistance and tolerance exhibited by pathogenic bacteria have resulted in a global public health crisis. Remarkably, almost all bacterial pathogens require the alarmone (p)ppGpp to be virulent. Thus, (p)ppGpp not only induces tolerance of nutritional limitations and chemical insults, including antibiotics, but is also often required for induction of virulence genes. However, understanding of the molecular targets of (p)ppGpp and the mechanisms by which (p)ppGpp influences bacterial physiology is incomplete. In this study, a systematic approach was used to uncover novel targets of (p)ppGpp in E. coli, the best-studied model bacterium. Comprehensive comparative studies of the targets revealed conserved target pathways of (p)ppGpp in both Gram-positive and -negative bacteria and novel targets of (p)ppGpp, including an alternative degradative pathway of (p)ppGpp. Thus, our discoveries may help in understanding of how (p)ppGpp increases the stress resilience and multidrug tolerance not only of the model organism E. coli but also of the pathogenic organisms in which these targets are conserved.

Zobrazit více v PubMed

Atkinson GC, Tenson T, Hauryliuk V. 2011. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One 6:e23479. doi:10.1371/journal.pone.0023479. PubMed DOI PMC

Maisonneuve E, Castro-Camargo M, Gerdes K. 2013. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154:1140–1150. doi:10.1016/j.cell.2013.07.048. PubMed DOI

Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS. 2010. ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev 74:171–199. doi:10.1128/MMBR.00046-09. PubMed DOI PMC

Cashel M, Gallant J. 1969. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 221:838–841. doi:10.1038/221838a0. PubMed DOI

Dalebroux ZD, Swanson MS. 2012. ppGpp: magic beyond RNA polymerase. Nat Rev Microbiol 10:203–212. doi:10.1038/nrmicro2720. PubMed DOI

Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. 2015. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 13:298–309. doi:10.1038/nrmicro3448. PubMed DOI PMC

Liu K, Bittner AN, Wang JD. 2015. Diversity in (p)ppGpp metabolism and effectors. Curr Opin Microbiol 24:72–79. doi:10.1016/j.mib.2015.01.012. PubMed DOI PMC

Ross W, Sanchez-Vazquez P, Chen AY, Lee JH, Burgos HL, Gourse RL. 2016. ppGpp binding to a site at the RNAP-DksA interface accounts for its dramatic effects on transcription initiation during the stringent response. Mol Cell 62:811–823. doi:10.1016/j.molcel.2016.04.029. PubMed DOI PMC

Ross W, Vrentas CE, Sanchez-Vazquez P, Gaal T, Gourse RL. 2013. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol Cell 50:420–429. doi:10.1016/j.molcel.2013.03.021. PubMed DOI PMC

Zuo Y, Wang Y, Steitz TA. 2013. The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex. Mol Cell 50:430–436. doi:10.1016/j.molcel.2013.03.020. PubMed DOI PMC

Mechold U, Potrykus K, Murphy H, Murakami KS, Cashel M. 2013. Differential regulation by ppGpp versus pppGpp in Escherichia coli. Nucleic Acids Res 41:6175–6189. doi:10.1093/nar/gkt302. PubMed DOI PMC

Lennon CW, Ross W, Martin-Tumasz S, Toulokhonov I, Vrentas CE, Rutherford ST, Lee JH, Butcher SE, Gourse RL. 2012. Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation. Genes Dev 26:2634–2646. doi:10.1101/gad.204693.112. PubMed DOI PMC

Paul BJ, Barker MM, Ross W, Schneider DA, Webb C, Foster JW, Gourse RL. 2004. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118:311–322. doi:10.1016/j.cell.2004.07.009. PubMed DOI

Fiil NP, von Meyenburg K, Friesen JD. 1972. Accumulation and turnover of guanosine tetraphosphate in Escherichia coli. J Mol Biol 71:769–783. doi:10.1016/S0022-2836(72)80037-8. PubMed DOI

Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Hightower GA, Smith JT, Conway T. 2008. The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 68:1128–1148. doi:10.1111/j.1365-2958.2008.06229.x. PubMed DOI PMC

Varik V, Oliveira SRA, Hauryliuk V, Tenson T. 2017. HPLC-based quantification of bacterial housekeeping nucleotides and alarmone messengers ppGpp and pppGpp. Sci Rep 7:11022. doi:10.1038/s41598-017-10988-6. PubMed DOI PMC

Brown A, Fernández IS, Gordiyenko Y, Ramakrishnan V. 2016. Ribosome-dependent activation of stringent control. Nature 534:277–280. doi:10.1038/nature17675. PubMed DOI PMC

Arenz S, Abdelshahid M, Sohmen D, Payoe R, Starosta AL, Berninghausen O, Hauryliuk V, Beckmann R, Wilson DN. 2016. The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis. Nucleic Acids Res 44:6471–6481. doi:10.1093/nar/gkw470. PubMed DOI PMC

Loveland AB, Bah E, Madireddy R, Zhang Y, Brilot AF, Grigorieff N, Korostelev AA. 2016. Ribosome*RelA structures reveal the mechanism of stringent response activation. Elife 5. doi:10.7554/eLife.17029. PubMed DOI PMC

Lemke JJ, Sanchez-Vazquez P, Burgos HL, Hedberg G, Ross W, Gourse RL. 2011. Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA. Proc Natl Acad Sci U S A 108:5712–5717. doi:10.1073/pnas.1019383108. PubMed DOI PMC

Durfee T, Hansen AM, Zhi H, Blattner FR, Jin DJ. 2008. Transcription profiling of the stringent response in Escherichia coli. J Bacteriol 190:1084–1096. doi:10.1128/JB.01092-07. PubMed DOI PMC

Kanjee U, Ogata K, Houry WA. 2012. Direct binding targets of the stringent response alarmone (p)ppGpp. Mol Microbiol 85:1029–1043. doi:10.1111/j.1365-2958.2012.08177.x. PubMed DOI

Maciag M, Kochanowska M, Lyzeń R, Wegrzyn G, Szalewska-Pałasz A. 2010. ppGpp inhibits the activity of Escherichia coli DnaG primase. Plasmid 63:61–67. doi:10.1016/j.plasmid.2009.11.002. PubMed DOI

Milon P, Tischenko E, Tomsic J, Caserta E, Folkers G, La Teana A, Rodnina MV, Pon CL, Boelens R, Gualerzi CO. 2006. The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. Proc Natl Acad Sci U S A 103:13962–13967. doi:10.1073/pnas.0606384103. PubMed DOI PMC

Mitkevich VA, Ermakov A, Kulikova AA, Tankov S, Shyp V, Soosaar A, Tenson T, Makarov AA, Ehrenberg M, Hauryliuk V. 2010. Thermodynamic characterization of ppGpp binding to EF-G or IF2 and of initiator tRNA binding to free IF2 in the presence of GDP, GTP, or ppGpp. J Mol Biol 402:838–846. doi:10.1016/j.jmb.2010.08.016. PubMed DOI

Fan H, Hahm J, Diggs S, Perry JJ, Blaha G. 2015. Structural and functional analysis of BipA, a regulator of virulence in enteropathogenic Escherichia coli. J Biol Chem 290:20856–20864. doi:10.1074/jbc.M115.659136. PubMed DOI PMC

Kihira K, Shimizu Y, Shomura Y, Shibata N, Kitamura M, Nakagawa A, Ueda T, Ochi K, Higuchi Y. 2012. Crystal structure analysis of the translation factor RF3 (release factor 3). FEBS Lett 586:3705–3709. doi:10.1016/j.febslet.2012.08.029. PubMed DOI

Persky NS, Ferullo DJ, Cooper DL, Moore HR, Lovett ST. 2009. The ObgE/CgtA GTPase influences the stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 73:253–266. doi:10.1111/j.1365-2958.2009.06767.x. PubMed DOI PMC

Gallant J, Irr J, Cashel M. 1971. The mechanism of amino acid control of guanylate and adenylate biosynthesis. J Biol Chem 246:5812–5816. PubMed

Hochstadt-Ozer J, Cashel M. 1972. The regulation of purine utilization in bacteria. V. Inhibition of purine phosphoribosyltransferase activities and purine uptake in isolated membrane vesicles by guanosine tetraphosphate. J Biol Chem 247:7067–7072. PubMed

Pao CC, Dyess BT. 1981. Effect of unusual guanosine nucleotides on the activities of some Escherichia coli cellular enzymes. Biochim Biophys Acta 677:358–362. doi:10.1016/0304-4165(81)90247-6. PubMed DOI

Hou Z, Cashel M, Fromm HJ, Honzatko RB. 1999. Effectors of the stringent response target the active site of Escherichia coli adenylosuccinate synthetase. J Biol Chem 274:17505–17510. doi:10.1074/jbc.274.25.17505. PubMed DOI

Kanjee U, Gutsche I, Alexopoulos E, Zhao BY, El Bakkouri M, Thibault G, Liu KY, Ramachandran S, Snider J, Pai EF, Houry WA. 2011. Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase. EMBO J 30:931–944. doi:10.1038/emboj.2011.5. PubMed DOI PMC

Kanjee U, Gutsche I, Ramachandran S, Houry WA. 2011. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition. Biochemistry 50:9388–9398. doi:10.1021/bi201161k. PubMed DOI

Kuroda A, Murphy H, Cashel M, Kornberg A. 1997. Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J Biol Chem 272:21240–21243. doi:10.1074/jbc.272.34.21240. PubMed DOI

Shyp V, Tankov S, Ermakov A, Kudrin P, English BP, Ehrenberg M, Tenson T, Elf J, Hauryliuk V. 2012. Positive allosteric feedback regulation of the stringent response enzyme RelA by its product. EMBO Rep 13:835–839. doi:10.1038/embor.2012.106. PubMed DOI PMC

Roelofs KG, Wang JX, Sintim HO, Lee VT. 2011. Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proc Natl Acad Sci U S A 108:15528–15533. doi:10.1073/pnas.1018949108. PubMed DOI PMC

Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT, Gründling A. 2013. Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci U S A 110:9084–9089. doi:10.1073/pnas.1300595110. PubMed DOI PMC

Corrigan RM, Bellows LE, Wood A, Gründling A. 2016. ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proc Natl Acad Sci U S A 113:E1710–E1719. doi:10.1073/pnas.1522179113. PubMed DOI PMC

Roelofs KG, Jones CJ, Helman SR, Shang X, Orr MW, Goodson JR, Galperin MY, Yildiz FH, Lee VT. 2015. Systematic identification of cyclic-di-GMP binding proteins in Vibrio cholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with Type II secretion systems. PLoS Pathog 11:e1005232. doi:10.1371/journal.ppat.1005232. PubMed DOI PMC

Zhang Y, Agrebi R, Bellows LE, Collet JF, Kaever V, Gründling A. 2017. Evolutionary adaptation of the essential tRNA methyltransferase TrmD to the signaling molecule 3′,5′-cAMP in bacteria. J Biol Chem 292:313–327. doi:10.1074/jbc.M116.758896. PubMed DOI PMC

Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H. 2005. Complete set of ORF clones of Escherichia coli ASKA library (A complete Set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299. doi:10.1093/dnares/dsi012. PubMed DOI

Mechold U, Murphy H, Brown L, Cashel M. 2002. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. J Bacteriol 184:2878–2888. doi:10.1128/JB.184.11.2878-2888.2002. PubMed DOI PMC

Sévin DC, Fuhrer T, Zamboni N, Sauer U. 2017. Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli. Nat Methods 14:187–194. doi:10.1038/nmeth.4103. PubMed DOI

Cashel M. 1975. Regulation of bacterial ppGpp and pppGpp. Annu Rev Microbiol 29:301–318. doi:10.1146/annurev.mi.29.100175.001505. PubMed DOI

Kriel A, Bittner AN, Kim SH, Liu K, Tehranchi AK, Zou WY, Rendon S, Chen R, Tu BP, Wang JD. 2012. Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol Cell 48:231–241. doi:10.1016/j.molcel.2012.08.009. PubMed DOI PMC

Stayton MM, Fromm HJ. 1979. Guanosine 5'-diphosphate-3′-diphosphate inhibition of adenylosuccinate synthetase. J Biol Chem 254:2579–2581. PubMed

Alatossava T, Jütte H, Kuhn A, Kellenberger E. 1985. Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187. J Bacteriol 162:413–419. PubMed PMC

Bharat A, Brown ED. 2014. Phenotypic investigations of the depletion of EngA in Escherichia coli are consistent with a role in ribosome biogenesis. FEMS Microbiol Lett 353:26–32. doi:10.1111/1574-6968.12403. PubMed DOI PMC

Buglino J, Shen V, Hakimian P, Lima CD. 2002. Structural and biochemical analysis of the Obg GTP binding protein. Structure 10:1581–1592. PubMed

Keasling JD, Bertsch L, Kornberg A. 1993. Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase. Proc Natl Acad Sci U S A 90:7029–7033. doi:10.1073/pnas.90.15.7029. PubMed DOI PMC

Tomar SK, Dhimole N, Chatterjee M, Prakash B. 2009. Distinct GDP/GTP bound states of the tandem G-domains of EngA regulate ribosome binding. Nucleic Acids Res 37:2359–2370. doi:10.1093/nar/gkp107. PubMed DOI PMC

Lutz S, Jacobi A, Schlensog V, Böhm R, Sawers G, Böck A. 1991. Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Mol Microbiol 5:123–135. doi:10.1111/j.1365-2958.1991.tb01833.x. PubMed DOI

Jacobi A, Rossmann R, Böck A. 1992. The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli. Arch Microbiol 158:444–451. doi:10.1007/BF00276307. PubMed DOI

Leonhartsberger S, Korsa I, Böck A. 2002. The molecular biology of formate metabolism in enterobacteria. J Mol Microbiol Biotechnol 4:269–276. PubMed

Maier T, Lottspeich F, Böck A. 1995. Gtp hydrolysis by Hypb is essential for nickel insertion into hydrogenases of Escherichia-coli. Eur J Biochem 230:133–138. doi:10.1111/j.1432-1033.1995.0133i.x. PubMed DOI

Chang DE, Smalley DJ, Conway T. 2002. Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol Microbiol 45:289–306. doi:10.1046/j.1365-2958.2002.03001.x. PubMed DOI

Khakimova M, Ahlgren HG, Harrison JJ, English AM, Nguyen D. 2013. The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance. J Bacteriol 195:2011–2020. doi:10.1128/JB.02061-12. PubMed DOI PMC

McLennan AG. 2006. The Nudix hydrolase superfamily. Cell Mol Life Sci 63:123–143. doi:10.1007/s00018-005-5386-7. PubMed DOI PMC

Grose JH, Bergthorsson U, Roth JR. 2005. Regulation of NAD synthesis by the trifunctional NadR protein of Salmonella enterica. J Bacteriol 187:2774–2782. doi:10.1128/JB.187.8.2774-2782.2005. PubMed DOI PMC

Fislage M, Wauters L, Versées W. 2016. MnmE, a GTPase that drives a complex tRNA modification reaction. Biopolymers 105:568–579. doi:10.1002/bip.22813. PubMed DOI

Scrima A, Wittinghofer A. 2006. Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. EMBO J 25:2940–2951. doi:10.1038/sj.emboj.7601171. PubMed DOI PMC

Nanamiya H, Kasai K, Nozawa A, Yun CS, Narisawa T, Murakami K, Natori Y, Kawamura F, Tozawa Y. 2008. Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis. Mol Microbiol 67:291–304. doi:10.1111/j.1365-2958.2007.06018.x. PubMed DOI

Ooga T, Ohashi Y, Kuramitsu S, Koyama Y, Tomita M, Soga T, Masui R. 2009. Degradation of ppGpp by nudix pyrophosphatase modulates the transition of growth phase in the bacterium Thermus thermophilus. J Biol Chem 284:15549–15556. doi:10.1074/jbc.M900582200. PubMed DOI PMC

Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M. 1991. Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266:5980–5990. PubMed

Tian CZ, Roghanian M, Jørgensen MG, Sneppen K, Sørensen MA, Gerdes K, Mitarai N. 2016. Rapid curtailing of the stringent response by toxin-antitoxin module-encoded mRNases. J Bacteriol 198:1918–1926. doi:10.1128/JB.00062-16. PubMed DOI PMC

Bergmiller T, Ackermann M, Silander OK. 2012. Patterns of evolutionary conservation of essential genes correlate with their compensability. PLoS Genet 8:e1002803. doi:10.1371/journal.pgen.1002803. PubMed DOI PMC

Saka K, Tadenuma M, Nakade S, Tanaka N, Sugawara H, Nishikawa K, Ichiyoshi N, Kitagawa M, Mori H, Ogasawara N, Nishimura A. 2005. A complete set of Escherichia coli open reading frames in mobile plasmids facilitating genetic studies. DNA Res 12:63–68. doi:10.1093/dnares/12.1.63. PubMed DOI

Liu K, Myers AR, Pisithkul T, Claas KR, Satyshur KA, Amador-Noguez D, Keck JL, Wang JD. 2015. Molecular mechanism and evolution of guanylate kinase regulation by (p)ppGpp. Mol Cell 57:735–749. doi:10.1016/j.molcel.2014.12.037. PubMed DOI PMC

Campeotto I, Zhang Y, Mladenov MG, Freemont PS, Gründling A. 2015. Complex structure and biochemical characterization of the Staphylococcus aureus cyclic diadenylate monophosphate (c-di-AMP)-binding protein PstA, the founding member of a new signal transduction protein family. J Biol Chem 290:2888–2901. doi:10.1074/jbc.M114.621789. PubMed DOI PMC

Rojas AM, Ehrenberg M, Andersson SG, Kurland CG. 1984. ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis. Mol Gen Genet 197:36–45. PubMed

Rymer RU, Solorio FA, Tehranchi AK, Chu C, Corn JE, Keck JL, Wang JD, Berger JM. 2012. Binding mechanism of metalNTP substrates and stringent-response alarmones to bacterial DnaG-type primases. Structure 20:1478–1489. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...