Inducible expression of (pp)pGpp synthetases in Staphylococcus aureus is associated with activation of stress response genes
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33378356
PubMed Central
PMC7802963
DOI
10.1371/journal.pgen.1009282
PII: PGENETICS-D-20-00759
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- fyziologický stres * MeSH
- ligasy genetika metabolismus MeSH
- regulace genové exprese u bakterií * MeSH
- Staphylococcus aureus genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- guanosine 3',5'-polyphosphate synthetases MeSH Prohlížeč
- ligasy MeSH
The stringent response is characterized by the synthesis of the messenger molecules pppGpp, ppGpp or pGpp (here collectively designated (pp)pGpp). The phenotypic consequences resulting from (pp)pGpp accumulation vary among species and can be mediated by different underlying mechanisms. Most genome-wide analyses have been performed under stress conditions, which often mask the immediate effects of (pp)pGpp-mediated regulatory circuits. In Staphylococcus aureus, (pp)pGpp can be synthesized via the RelA-SpoT-homolog, RelSau upon amino acid limitation or via one of the two small (pp)pGpp synthetases RelP or RelQ upon cell wall stress. We used RNA-Seq to compare the global effects in response to induction of the synthetase of rel-Syn (coding for the enzymatic region of RelSau) or relQ without the need to apply additional stress conditions. Induction of rel-Syn resulted in changes in the nucleotide pool similar to induction of the stringent response via the tRNA synthetase inhibitor mupirocin: a reduction in the GTP pool, an increase in the ATP pool and synthesis of pppGpp, ppGpp and pGpp. Induction of all three enzymes resulted in similar changes in the transcriptome. However, RelQ was less active than Rel-Syn and RelP, indicating strong restriction of its (pp)pGpp-synthesis activity in vivo. (pp)pGpp induction resulted in the downregulation of many genes involved in protein and RNA/DNA metabolism. Many of the (pp)pGpp upregulated genes are part of the GTP sensitive CodY regulon and thus likely regulated through lowering of the GTP pool. New CodY independent transcriptional changes were detected including genes involved in the SOS response, iron storage (e.g. ftnA, dps), oxidative stress response (e.g., perR, katA, sodA) and the psmα1-4 and psmß1-2 operons coding for cytotoxic, phenol soluble modulins (PSMs). Analyses of the ftnA, dps and psm genes in different regulatory mutants revealed that their (pp)pGpp-dependent regulation can occur independent of the regulators PerR, Fur, SarA or CodY. Moreover, psm expression is uncoupled from expression of the quorum sensing system Agr, the main known psm activator. The expression of central genes of the oxidative stress response protects the bacteria from anticipated ROS stress derived from PSMs or exogenous sources. Thus, we identified a new link between the stringent response and oxidative stress in S. aureus that is likely crucial for survival upon phagocytosis.
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Interfaculty Institute of Microbiology and Infection Medicine University of Tuebingen Germany
Quantitative Proteomics and Proteome Center Tuebingen University of Tuebingen Germany
Zobrazit více v PubMed
Irving SE, Corrigan RM. Triggering the stringent response: signals responsible for activating (p)ppGpp synthesis in bacteria. Microbiology. 2018;164(3):268–76. 10.1099/mic.0.000621 PubMed DOI
Dozot M, Boigegrain RA, Delrue RM, Hallez R, Ouahrani-Bettache S, Danese I, et al. The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system virB. Cell Microbiol. 2006;8(11):1791–802. 10.1111/j.1462-5822.2006.00749.x PubMed DOI
Steinchen W, Bange G. The magic dance of the alarmones (p)ppGpp. Mol Microbiol. 2016;101(4):531–44. 10.1111/mmi.13412 PubMed DOI
Wu J, Xie J. Magic spot: (p) ppGpp. J Cell Physiol. 2009;220(2):297–302. 10.1002/jcp.21797 PubMed DOI
Zhu M, Pan Y, Dai X. (p)ppGpp: the magic governor of bacterial growth economy. Curr Genet. 2019. 10.1007/s00294-019-00973-z PubMed DOI
Gaca AO, Colomer-Winter C, Lemos JA. Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis. J Bacteriol. 2015;197(7):1146–56. 10.1128/JB.02577-14 PubMed DOI PMC
Liu K, Bittner AN, Wang JD. Diversity in (p)ppGpp metabolism and effectors. Curr Opin Microbiol. 2015;24:72–9. 10.1016/j.mib.2015.01.012 PubMed DOI PMC
Hobbs JK, Boraston AB. (p)ppGpp and the Stringent Response: An Emerging Threat to Antibiotic Therapy. ACS Infect Dis. 2019;5(9):1505–17. 10.1021/acsinfecdis.9b00204 PubMed DOI
Wolz C, Geiger T, Goerke C. The synthesis and function of the alarmone (p)ppGpp in firmicutes. Int J Med Microbiol. 2010;300(2–3):142–7. 10.1016/j.ijmm.2009.08.017 PubMed DOI
Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol. 2015;13(5):298–309. 10.1038/nrmicro3448 PubMed DOI PMC
Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS. ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev. 2010;74(2):171–99. 10.1128/MMBR.00046-09 PubMed DOI PMC
Atkinson GC, Tenson T, Hauryliuk V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One. 2011;6(8):e23479 10.1371/journal.pone.0023479 PubMed DOI PMC
Geiger T, Goerke C, Fritz M, Schafer T, Ohlsen K, Liebeke M, et al. Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus. Infect Immun. 2010;78(5):1873–83. 10.1128/IAI.01439-09 PubMed DOI PMC
Gratani FL, Horvatek P, Geiger T, Borisova M, Mayer C, Grin I, et al. Regulation of the opposing (p)ppGpp synthetase and hydrolase activities in a bifunctional RelA/SpoT homologue from Staphylococcus aureus. PLoS Genet. 2018;14(7):e1007514 10.1371/journal.pgen.1007514 PubMed DOI PMC
Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K. Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol. 2003;49(3):807–21. 10.1046/j.1365-2958.2003.03599.x PubMed DOI
Geiger T, Kastle B, Gratani FL, Goerke C, Wolz C. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J Bacteriol. 2014;196(4):894–902. 10.1128/JB.01201-13 PubMed DOI PMC
Steinchen W, Schuhmacher JS, Altegoer F, Fage CD, Srinivasan V, Linne U, et al. Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone. Proc Natl Acad Sci U S A. 2015;112(43):13348–53. 10.1073/pnas.1505271112 PubMed DOI PMC
Beljantseva J, Kudrin P, Andresen L, Shingler V, Atkinson GC, Tenson T, et al. Negative allosteric regulation of Enterococcus faecalis small alarmone synthetase RelQ by single-stranded RNA. Proc Natl Acad Sci U S A. 2017;114(14):3726–31. 10.1073/pnas.1617868114 PubMed DOI PMC
Manav MC, Beljantseva J, Bojer MS, Tenson T, Ingmer H, Hauryliuk V, et al. Structural basis for (p)ppGpp synthesis by the Staphylococcus aureus small alarmone synthetase RelP. J Biol Chem. 2018;293(9):3254–64. 10.1074/jbc.RA117.001374 PubMed DOI PMC
Steinchen W, Vogt MS, Altegoer F, Giammarinaro PI, Horvatek P, Wolz C, et al. Structural and mechanistic divergence of the small (p)ppGpp synthetases RelP and RelQ. Sci Rep. 2018;8(1):2195 10.1038/s41598-018-20634-4 PubMed DOI PMC
Yang N, Xie S, Tang NY, Choi MY, Wang Y, Watt RM. The Ps and Qs of alarmone synthesis in Staphylococcus aureus. PLoS One. 2019;14(10):e0213630 10.1371/journal.pone.0213630 PubMed DOI PMC
Geiger T, Francois P, Liebeke M, Fraunholz M, Goerke C, Krismer B, et al. The stringent response of Staphylococcus aureus and its impact on survival after phagocytosis through the induction of intracellular PSMs expression. PLoS Pathog. 2012;8(11):e1003016 10.1371/journal.ppat.1003016 PubMed DOI PMC
Corrigan RM, Bellows LE, Wood A, Grundling A. ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proc Natl Acad Sci U S A. 2016;113(12):E1710–9. 10.1073/pnas.1522179113 PubMed DOI PMC
Gao W, Chua K, Davies JK, Newton HJ, Seemann T, Harrison PF, et al. Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog. 2010;6(6):e1000944 10.1371/journal.ppat.1000944 PubMed DOI PMC
Dordel J, Kim C, Chung M, Pardos de la Gandara M, Holden MT, Parkhill J, et al. Novel determinants of antibiotic resistance: identification of mutated loci in highly methicillin-resistant subpopulations of methicillin-resistant Staphylococcus aureus. MBio. 2014;5(2):e01000 10.1128/mBio.01000-13 PubMed DOI PMC
Matsuo M, Hiramatsu M, Singh M, Sasaki T, Hishinuma T, Yamamoto N, et al. Genetic and Transcriptomic Analyses of Ciprofloxacin-Tolerant Staphylococcus aureus Isolated by the Replica Plating Tolerance Isolation System (REPTIS). Antimicrob Agents Chemother. 2019;63(2):e02019–18. 10.1128/AAC.02019-18 PubMed DOI PMC
Katayama Y, Azechi T, Miyazaki M, Takata T, Sekine M, Matsui H, et al. Prevalence of Slow-Growth Vancomycin Nonsusceptibility in Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2017;61(11). 10.1128/AAC.00452-17 PubMed DOI PMC
Kriel A, Bittner AN, Kim SH, Liu K, Tehranchi AK, Zou WY, et al. Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Molecular Cell. 2012;48(2):231–41. 10.1016/j.molcel.2012.08.009 PubMed DOI PMC
Krasny L, Tiserova H, Jonak J, Rejman D, Sanderova H. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol Microbiol. 2008;69(1):42–54. 10.1111/j.1365-2958.2008.06256.x PubMed DOI
Kastle B, Geiger T, Gratani FL, Reisinger R, Goerke C, Borisova M, et al. rRNA regulation during growth and under stringent conditions in Staphylococcus aureus. Environ Microbiol. 2015;17(11):4394–405. 10.1111/1462-2920.12867 PubMed DOI
Krasny L, Gourse RL. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J. 2004;23(22):4473–83. 10.1038/sj.emboj.7600423 PubMed DOI PMC
Pohl K, Francois P, Stenz L, Schlink F, Geiger T, Herbert S, et al. CodY in Staphylococcus aureus: a regulatory link between metabolism and virulence gene expression. J Bacteriol. 2009;191(9):2953–63. 10.1128/JB.01492-08 PubMed DOI PMC
Majerczyk CD, Dunman PM, Luong TT, Lee CY, Sadykov MR, Somerville GA, et al. Direct targets of CodY in Staphylococcus aureus. J Bacteriol. 2010;192(11):2861–77. 10.1128/JB.00220-10 PubMed DOI PMC
Eymann C, Homuth G, Scharf C, Hecker M. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol. 2002;184(9):2500–20. 10.1128/jb.184.9.2500-2520.2002 PubMed DOI PMC
Kazmierczak KM, Wayne KJ, Rechtsteiner A, Winkler ME. Roles of rel(Spn) in stringent response, global regulation and virulence of serotype 2 Streptococcus pneumoniae D39. Mol Microbiol. 2009;72(3):590–611. 10.1111/j.1365-2958.2009.06669.x PubMed DOI PMC
Gaca AO, Abranches J, Kajfasz JK, Lemos JA. Global transcriptional analysis of the stringent response in Enterococcus faecalis. Microbiology. 2012;158(Pt 8):1994–2004. 10.1099/mic.0.060236-0 PubMed DOI PMC
Nascimento MM, Lemos JA, Abranches J, Lin VK, Burne RA. Role of RelA of Streptococcus mutans in global control of gene expression. J Bacteriol. 2008;190(1):28–36. 10.1128/JB.01395-07 PubMed DOI PMC
Sanchez-Vazquez P, Dewey CN, Kitten N, Ross W, Gourse RL. Genome-wide effects on Escherichia coli transcription from ppGpp binding to its two sites on RNA polymerase. Proc Natl Acad Sci U S A. 2019;116(17):8310–9. 10.1073/pnas.1819682116 PubMed DOI PMC
Hughes J, Mellows G. Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. Biochem J. 1980;191(1):209–19. 10.1042/bj1910209 PubMed DOI PMC
Augagneur Y, King AN, Germain-Amiot N, Sassi M, Fitzgerald JW, Sahukhal GS, et al. Analysis of the CodY RNome reveals RsaD as a stress-responsive riboregulator of overflow metabolism in Staphylococcus aureus. Mol Microbiol. 2020;113(2):309–25. 10.1111/mmi.14418 PubMed DOI
Queck SY, Jameson-Lee M, Villaruz AE, Bach TH, Khan BA, Sturdevant DE, et al. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell. 2008;32(1):150–8. PubMed PMC
Gaupp R, Ledala N, Somerville GA. Staphylococcal response to oxidative stress. Front Cell Infect Microbiol. 2012;2:33 10.3389/fcimb.2012.00033 PubMed DOI PMC
Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, et al. RegPrecise 3.0—a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genomics. 2013;14:745 10.1186/1471-2164-14-745 PubMed DOI PMC
Fuchs S, Mehlan H, Bernhardt J, Hennig A, Michalik S, Surmann K, et al. AureoWiki The repository of the Staphylococcus aureus research and annotation community. Int J Med Microbiol. 2018;308(6):558–68. 10.1016/j.ijmm.2017.11.011 PubMed DOI
Heinrichs JH, Bayer MG, Cheung AL. Characterization of the sar locus and its interaction with agr in Staphylococcus aureus. J Bacteriol. 1996;178(2):418–23. 10.1128/jb.178.2.418-423.1996 PubMed DOI PMC
Zielinska AK, Beenken KE, Joo HS, Mrak LN, Griffin LM, Luong TT, et al. Defining the strain-dependent impact of the Staphylococcal accessory regulator (sarA) on the alpha-toxin phenotype of Staphylococcus aureus. J Bacteriol. 2011;193(12):2948–58. 10.1128/JB.01517-10 PubMed DOI PMC
Sun F, Ding Y, Ji Q, Liang Z, Deng X, Wong CC, et al. Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proc Natl Acad Sci U S A. 2012;109(38):15461–6. 10.1073/pnas.1205952109 PubMed DOI PMC
Ballal A, Manna AC. Control of thioredoxin reductase gene (trxB) transcription by SarA in Staphylococcus aureus. J Bacteriol. 2010;192(1):336–45. 10.1128/JB.01202-09 PubMed DOI PMC
Grosser MR, Weiss A, Shaw LN, Richardson AR. Regulatory Requirements for Staphylococcus aureus Nitric Oxide Resistance. J Bacteriol. 2016;198(15):2043–55. 10.1128/JB.00229-16 PubMed DOI PMC
George SE, Hrubesch J, Breuing I, Vetter N, Korn N, Hennemann K, et al. Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population. Proc Natl Acad Sci U S A. 2019;116(38):19145–54. 10.1073/pnas.1902752116 PubMed DOI PMC
Reiss S, Pane-Farre J, Fuchs S, Francois P, Liebeke M, Schrenzel J, et al. Global analysis of the Staphylococcus aureus response to mupirocin. Antimicrob Agents Chemother. 2012;56(2):787–804. 10.1128/AAC.05363-11 PubMed DOI PMC
Li L, Bayer AS, Cheung A, Lu L, Abdelhady W, Donegan NP, et al. The stringent response contributes to persistent methicillin-resistant Staphylococcus aureus endovascular infection through the purine biosynthetic pathway. J Infect Dis. 2020. 10.1093/infdis/jiaa202 PubMed DOI PMC
Cheung GY, Joo HS, Chatterjee SS, Otto M. Phenol-soluble modulins—critical determinants of staphylococcal virulence. FEMS Microbiol Rev. 2014;38(4):698–719. 10.1111/1574-6976.12057 PubMed DOI PMC
Peschel A, Otto M. Phenol-soluble modulins and staphylococcal infection. Nat Rev Microbiol. 2013;11(10):667–73. 10.1038/nrmicro3110 PubMed DOI PMC
Schlatterer K, Beck C, Hanzelmann D, Lebtig M, Fehrenbacher B, Schaller M, et al. The Mechanism behind Bacterial Lipoprotein Release: Phenol-Soluble Modulins Mediate Toll-Like Receptor 2 Activation via Extracellular Vesicle Release from Staphylococcus aureus. MBio. 2018;9(6). 10.1128/mBio.01851-18 PubMed DOI PMC
Wang X, Thompson CD, Weidenmaier C, Lee JC. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat Commun. 2018;9(1):1379 10.1038/s41467-018-03847-z PubMed DOI PMC
Bojer MS, Lindemose S, Vestergaard M, Ingmer H. Quorum Sensing-Regulated Phenol-Soluble Modulins Limit Persister Cell Populations in Staphylococcus aureus. Front Microbiol. 2018;9:255 10.3389/fmicb.2018.00255 PubMed DOI PMC
Xu T, Wang XY, Cui P, Zhang YM, Zhang WH, Zhang Y. The Agr Quorum Sensing System Represses Persister Formation through Regulation of Phenol Soluble Modulins in Staphylococcus aureus. Front Microbiol. 2017;8:2189 10.3389/fmicb.2017.02189 PubMed DOI PMC
Zapf RL, Wiemels RE, Keogh RA, Holzschu DL, Howell KM, Trzeciak E, et al. The Small RNA Teg41 Regulates Expression of the Alpha Phenol-Soluble Modulins and Is Required for Virulence in Staphylococcus aureus. MBio. 2019;10(1). 10.1128/mBio.02484-18 PubMed DOI PMC
Jiang Q, Jin Z, Sun B. MgrA Negatively Regulates Biofilm Formation and Detachment by Repressing the Expression of psm Operons in Staphylococcus aureus. Appl Environ Microbiol. 2018;84(16). 10.1128/AEM.01008-18 PubMed DOI PMC
Liu B, Sun B. Rsp promotes the transcription of virulence factors in an agr-independent manner in Staphylococcus aureus. Emerg Microbes Infect. 2020:1–42. PubMed PMC
Fang B, Liu B, Sun B. Transcriptional regulation of virulence factors Hla and phenol-soluble modulins α by AraC-type regulator Rbf in Staphylococcus aureus. Int J Med Microbiol. 2020;310(5):151436 10.1016/j.ijmm.2020.151436 PubMed DOI
Sojka L, Kouba T, Barvik I, Sanderova H, Maderova Z, Jonak J, et al. Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res. 2011;39(11):4598–611. 10.1093/nar/gkr032 PubMed DOI PMC
Fritsch VN, Loi VV, Busche T, Tung QN, Lill R, Horvatek P, et al. The alarmone (p)ppGpp confers tolerance to oxidative stress during the stationary phase by maintenance of redox and iron homeostasis in Staphylococcus aureus. Free Radic Biol Med. 2020. 10.1016/j.freeradbiomed.2020.10.322 PubMed DOI PMC
Kim HY, Go J, Lee KM, Oh YT, Yoon SS. Guanosine tetra- and pentaphosphate increase antibiotic tolerance by reducing reactive oxygen species production in Vibrio cholerae. J Biol Chem. 2018;293(15):5679–94. 10.1074/jbc.RA117.000383 PubMed DOI PMC
Hanna N, Ouahrani-Bettache S, Drake KL, Adams LG, Kohler S, Occhialini A. Global Rsh-dependent transcription profile of Brucella suis during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses. BMC Genomics. 2013;14:459 10.1186/1471-2164-14-459 PubMed DOI PMC
Martins D, McKay G, Sampathkumar G, Khakimova M, English AM, Nguyen D. Superoxide dismutase activity confers (p)ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2018;115(39):9797–802. 10.1073/pnas.1804525115 PubMed DOI PMC
Yan X, Zhao C, Budin-Verneuil A, Hartke A, Rince A, Gilmore MS, et al. The (p)ppGpp synthetase RelA contributes to stress adaptation and virulence in Enterococcus faecalis V583. Microbiology. 2009;155(Pt 10):3226–37. 10.1099/mic.0.026146-0 PubMed DOI
Holley C, Gangaiah D, Li W, Fortney KR, Janowicz DM, Ellinger S, et al. A (p)ppGpp-null mutant of Haemophilus ducreyi is partially attenuated in humans due to multiple conflicting phenotypes. Infect Immun. 2014;82(8):3492–502. 10.1128/IAI.01994-14 PubMed DOI PMC
Wang J, Tian Y, Zhou Z, Zhang L, Zhang W, Lin M, et al. Identification and Functional Analysis of RelA/SpoT Homolog (RSH) Genes in Deinococcus radiodurans. J Microbiol Biotechnol. 2016;26(12):2106–15. 10.4014/jmb.1601.01017 PubMed DOI
Abranches J, Martinez AR, Kajfasz JK, Chavez V, Garsin DA, Lemos JA. The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis. J Bacteriol. 2009;191(7):2248–56. 10.1128/JB.01726-08 PubMed DOI PMC
Surewaard BG, de Haas CJ, Vervoort F, Rigby KM, DeLeo FR, Otto M, et al. Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell Microbiol. 2013;15(8):1427–37. 10.1111/cmi.12130 PubMed DOI PMC
Yang J, Anderson BW, Turdiev A, Turdiev H, Stevenson DM, Amador-Noguez D, et al. The nucleotide pGpp acts as a third alarmone in Bacillus, with functions distinct from those of (p) ppGpp. Nat Commun. 2020;11(1):5388 10.1038/s41467-020-19166-1 PubMed DOI PMC
Fernández-Coll, Chashel m,. Possible roles for basal levels of (p)ppGpp: growth efficiency vs surviving stress. Front Microbiol. in press. 10.3389/fmicb.2020.592718 PubMed DOI PMC
Gaca AO, Kajfasz JK, Miller JH, Liu K, Wang JD, Abranches J, et al. Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response. MBio. 2013;4(5):e00646–13. 10.1128/mBio.00646-13 PubMed DOI PMC
Bae T, Schneewind O. Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid. 2006;55(1):58–63. 10.1016/j.plasmid.2005.05.005 PubMed DOI
Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, Bose JL, et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio. 2013;4(1):e00537–12. 10.1128/mBio.00537-12 PubMed DOI PMC
Goerke C, Campana S, Bayer MG, Doring G, Botzenhart K, Wolz C. Direct quantitative transcript analysis of the agr regulon of Staphylococcus aureus during human infection in comparison to the expression profile in vitro. Infect Immun. 2000;68(3):1304–11. 10.1128/iai.68.3.1304-1311.2000 PubMed DOI PMC
Juengert JR, Borisova M, Mayer C, Wolz C, Brigham CJ, Sinskey AJ, et al. Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-Hydroxybutyrate) in Ralstonia eutropha H16. Appl Environ Microbiol. 2017;83(13). PubMed PMC
Meyer H, Liebeke M, Lalk M. A protocol for the investigation of the intracellular Staphylococcus aureus metabolome. Anal Biochem. 2010;401(2):250–9. 10.1016/j.ab.2010.03.003 PubMed DOI
Mader U, Nicolas P, Depke M, Pane-Farre J, Debarbouille M, van der Kooi-Pol MM, et al. Staphylococcus aureus Transcriptome Architecture: From Laboratory to Infection-Mimicking Conditions. PLoS Genet. 2016;12(4):e1005962 10.1371/journal.pgen.1005962 PubMed DOI PMC
Direct detection of stringent alarmones (pp)pGpp using malachite green