Distribution of Herbivorous Fish Is Frozen by Low Temperature
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28004804
PubMed Central
PMC5177937
DOI
10.1038/srep39600
PII: srep39600
Knihovny.cz E-resources
- MeSH
- Invertebrates MeSH
- Biodiversity MeSH
- Biomass MeSH
- Herbivory * MeSH
- Ecosystem MeSH
- Climate Change MeSH
- Linear Models MeSH
- Seaweed metabolism MeSH
- Cold Temperature * MeSH
- Population Dynamics MeSH
- Probability MeSH
- Seasons MeSH
- Plants MeSH
- Fishes physiology MeSH
- Intestinal Mucosa metabolism MeSH
- Water chemistry MeSH
- Geography MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Water MeSH
The number of herbivores in populations of ectothermic vertebrates decreases with increasing latitude. At higher latitudes, fish consuming plant matter are exclusively omnivorous. We assess whether omnivorous fish readily shift to herbivory or whether animal prey is typically preferred. We address temperature as the key factor causing their absence at higher latitudes and discuss the potential poleward dispersion caused by climate changes. A controlled experiment illustrates that rudd (Scardinius erythrophthalmus) readily utilize plant matter at water temperatures above 20 °C and avoid its consumption below 20 °C. Field data support these results, showing that plant matter dominates rudd diets during the summer and is absent during the spring. Utilizing cellulose requires the enzyme cellulase, which is produced by microorganisms growing at temperatures of 15-42 °C. Water temperatures at higher latitudes do not reach 15 °C year-round; at our latitude of 50°N~150 days/year. Hence, the species richness of omnivorous fish decreases dramatically above 55° latitude. Our results provide support for the hypothesis that strict herbivorous specialists have developed only in the tropics. Temperatures below 15 °C, even for a short time period, inactivate cellulase and cause diet limitations for omnivorous fish. However, we may expect increases in herbivory at higher latitudes caused by climate change.
See more in PubMed
Hutchinson G. E. A Treatise in Limnology. III. Limnological Botany. Wiley Interscience, New York (1975).
Hutchinson G. E. Thoughts on aquatic insects. Bioscience 31, 495–500 (1981).
Newman R. M. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. J. N. Am. Benthol. Soc. 10, 89–114 (1991).
Lodge D. M. Herbivory on freshwater macrophytes. Aquat. Bot. 41, 195–224 (1991).
Wood K. A. et al.. Herbivore regulation of plant abundance in aquatic ecosystems. Biol. Rev. online early, doi: 10.1111/brv.12272 (2016). PubMed DOI
Bakker E. S. et al.. Herbivory on freshwater and marine macrophytes: A review and perspective. Aquat. Bot. online early, doi: 10.1016/j.aquabot.2016.04. 008 (2016). DOI
Lacoull P. & Freedman B. Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev. 14, 89–136 (2006).
Miller S. A. & Crowl T. A. Effects of common carp (Cyprinus carpio L.) on macrophytes and invertebrate communities in a shallow lake. Freshwater Biol. 51, 85–94 (2006).
Dorenbosch M. & Bakker E. S. Effects of contrasting omnivorous fish on submerged macrophyte biomass in temperate lakes: a mesocosm experiment. Freshwater Biol. 57, 1360–1372 (2012).
Niederholzer R. & Hofer R. The adaptation of digestive enzymes to temperature, season and diet in roach Rutilus rutilus L. and rudd Scardinius erythrophthalmus L. Cellulase. J. Fish Biol. 15, 411–416 (1979).
Prejs A. & Blaszczyk M. Relationships between food and cellulase activity in freshwater fish. J. Fish Biol. 11, 447–452 (1977).
Gerkings S. D. Feeding ecology of fish. Academic Press Inc., San Diego, 416 pp (1994).
Zimmerman L. C. & Tracy C. R. Interactions between the environment and ectothermy and herbivory in reptiles. Physiol. Zool. 62, 374–409 (1989).
Behrens M. D. & Lafferty K. D. Temperature and diet effects on omnivorous fish performance: implications for the latitudinal diversity gradient in herbivorous fishes. Can. J. Fish. Aquat. Sci. 64, 867–873 (2007).
Dorenbosch M. & Bakker E. S. Herbivory in omnivorous fishes: effect of plant secondary metabolites and prey stoichiometry. Freshwater Biol. 56, 1783–1797 (2011).
González-Bergonzoni I. et al.. Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems 15, 492–503 (2012).
Behrens M. D. & Lafferty K. D. Geographic variation in the diet of Opaleye (Girella nigricans) with respect to temperature and habitat. PLoS ONE 7, e45901 (2012). PubMed PMC
Floeter S., Behrens M., Ferreira C., Paddack M. & Horn M. Geographical gradients of marine herbivorous fishes: patterns and processes. Mar. Biol. 147, 1435–47 (2005).
Clements K. D., Raubenheimer D. & Choat J. H. Nutritional ecology of marine herbivorous fishes: ten years on. Funct. Ecol. 23, 79–92 (2009).
Mead G. W. A history of South Pacific fishes. Scientific explorations of the South Pacific (ed. by W.S. Wooster), pp 236–251. National Academy of Sciences, Washington DC (1970).
Ferreira C. E. L., Floeter S. R., Gasparini J. L., Ferreira B. P. & Joyeux J. C. Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. J. Biogeogr. 31, 1093–106 (2004).
Arrington D. A., Winemiller K. O., Loftus W. F. & Akin S. How often do fishes “run on empty”? Ecology 83, 2145–51 (2002).
Gaines S. D. & Lubchenco J. A unified approach to marine plantherbivore interactions II. Biogeography. Annu. Rev. Ecol. Evol. Syst. 13, 111–138 (1982).
Vergés A. et al.. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 102, 1518–1527 (2014).
Vergés A. Beyond the tropics: ocean warming, shifts in species interactions and the tropicalisation of temperate reefs. Species on the Move (oral presentation), 9–12 February 2016, Hobart, Tasmania (2016).
Guinan M. E. Jr, Kapuscinski K. L. & Teece M. A. Seasonal diet shifts and trophic position of an invasive cyprinid, the rudd Scardinius erythrophthalmus (Linnaeus, 1758), in the upper Niagara River. Aquat. Invasions 10, 217–225 (2015).
Lake M. D., Hicks B. J., Wells R. & Dugdale T. M. Consumption of submerged aquatic macrophytes by rudd (Scardinius erythrophthalmus L.) in New Zealand. Hydrobiologia 470, 13–22 (2002).
Kapuscinski K. L. et al.. Selective herbivory by an invasive cyprinid, the rudd Scardinius erythrophthalmus. Freshwater Biol. 59, 2315–2327 (2014).
Prejs A. & Jackowska H. Lake macrophytes as the food of roach (Rutilus rutilus L.) and rudd (Scardinius erythrophthalmus L.). I. Species composition and dominance relations in the lake and food. Ekol. Pol. 26, 429–438 (1978).
Kapuscinski K. L., Farrell J. M. & Wilkinson M. A. Feeding patterns and population structure of an invasive cyprinid, the rudd Scardinius erythrophthalmus (Cypriniformes, Cyprinidae), in Buffalo Harbor (Lake Erie) and the upper Niagara River. Hydrobiologia 693, 169–181 (2012).
Prejs A. Lake macrophytes as the food of roach (Rutilus rutilus L.) and rudd (Scardinius erythrophthalmus L.) II. Daily intake of macrophyte food in relation to body size of fish. Ekol. Pol. 26, 537–553 (1978).
Prejs A. Herbivory by temperate freshwater fishes and its consequences. Environ. Biol. Fish. 10, 281–296 (1984).
González-Bergonzoni I. et al.. Potential drivers of seasonal shifts in fish omnivory in a subtropical stream. Hydrobiologia 768, 183–196 (2016).
Nurminen L., Horppila J., Lappalainen J. & Malinen T. Implications of rudd (Scardinius erythrophthalmus) herbivory on submerged macrophytes in a shallow eutrophic lake. Hydrobiologia 506–509, 511–518 (2003).
Vander Zanden M. J., Clayton M. K., Moody E. K., Solomon C. T. & Weidel B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS ONE 10, e0116182, doi: 10.1371/journal.pone.0116182 (2015). PubMed DOI PMC
Newsome S. D., Fogel M. L., Kelly L. & del Rio C. M. Contributions of direct incorporation from diet and microbial amino acids to protein synthesis in Nile tilapia. Funct. Ecol. 25, 1051–1062 (2011).
Boersma M. et al.. Temperature driven changes in the diet preference of omnivorous copepods: no more meat when it’s hot? Ecol. Lett. 19, 45–53 (2016). PubMed
Zhang P., Blonk B. A., van den Berg R. F. & Bakker E. S. The effect of temperature on herbivory by the omnivorous ectotherm snail Lymnaea stagnalis. Hydrobiologia online early, doi: 10.1007/s10750-016-2891-7 (2016). DOI
Day R. et al.. Enzymatic digestion in stomachless fishes: how a simple gut accommodates both herbivory and carnivory. J. Comp. Physiol. 181, 603–613 (2011). PubMed
Barr B., Hsieh Y.-L. & Ganem B. W. Identification of two functionally different classes of exocellulases. Biochemistry 35, 586–592 (1996). PubMed
Ganguly S. & Prasad A. Microflora in fish digestive tract plays significant role in digestion and metabolism: a review. Rev. Fish Biol. Fisher. 22, 11–16 (2012).
Saha S., Roy R. N., Sen S. K. & Ray A. K. Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquacult. Res. 37, 380–388 (2006).
Ghosh K., Sen S. K. & Ray A. K. Characterization of Bacilli isolated from the gut of rohu, Labeo rohita, Fingerlings and its significance in digestion. J. Appl. Aquacult. 12, 33–42 (2002).
Suzuki K.-I., Ojima T. & Nishita K. Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. Eur. J. Biochem. 270, 771–778 (2003). PubMed
Zin H. W., Park K. H. & Choi T. J. Purification and characterization of a carboxymethyl cellulase from Artemia salina. Biochem. Bioph. Res. Co. 443, 194–199 (2014). PubMed
Manavalan T., Manavalan A., Thangavelu K. P. & Heese K. Characterization of a novel endoglucanase from Ganoderma lucidum. J. Basic. Microb. 55, 761–771 (2015). PubMed
Espinoza R. E., Wiens J. J. & Tracy C. R. Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. P. Natl. Acad. Sci. USA 101, 16819–16824 (2004). PubMed PMC
Bennett S., Wernberg T., Harvey E. S., Santana-Garcon J. & Saunders B. J. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol. Lett. 18, 714–723 (2015). PubMed
Wernberg T. Hot, heatwaves and herbivores– drivers and feedbacks of changing of species distributions and community reconfiguration. Species on the Move (oral presentation), 9–12 February 2016, Hobart, Tasmania (2016).
Mathavan S., Vivekanandan E. & Pandian T. J. Food utilization in the fish Tilapia mossambica fed on plant and animal foods. Helgoland Mar. Res. 28, 66–70 (1976).
Čech M. et al.. Location and timing of the deposition of egg strands by perch (Perca fluviatilis L.): the roles of lake hydrology, spawning substrate and female size. Knowl. Manag. Aquat. Ec. 403, 1–12 (2011).
CEN, Water Quality – Sampling of fish with multi-mesh gillnets. EN–14757 (2005).
Post D. M. et al.. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007). PubMed
Parnell A. C., Inger R., Bearhop S. & Jackson A. L. Source Partitioning Using Stable Isotopes: Coping with Too Much Variation. PLoS ONE 5, e9672. doi: 10.1371/journal.pone.0009672 (2010). PubMed DOI PMC
R Development Core Team, R: A language and environment for statistical computing (2015).
Phillips D. L. & Koch P. L. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130, 114–125 (2002). PubMed
Post D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).
Mill A. C., Pinnegar J. K. & Polunin N. V. C. Explaining isotope trophic-step fractionation: why herbivorous fish are different. Functional Ecology 21, 1137–1145 (2007).
Esri, Working with ArcMap. ArcGIS Help 10.2.2. (2016). Available at: http://resources.arcgis.com/en/help/main/10.2/#/Mapping_and_visualization_in_ArcGIS_for_Desktop/018q00000004000000/ (Accessed: 14th September 2016). DOI