Contrasting structural complexity differentiate hunting strategy in an ambush apex predator
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34471177
PubMed Central
PMC8410764
DOI
10.1038/s41598-021-96908-1
PII: 10.1038/s41598-021-96908-1
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- Esocidae fyziologie MeSH
- jezera chemie MeSH
- potravní řetězec * MeSH
- predátorské chování fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Structural complexity is known to influence prey behaviour, mortality and population structure, but the effects on predators have received less attention. We tested whether contrasting structural complexity in two newly colonised lakes (low structural complexity lake-LSC; high structural complexity-HSC) was associated with contrasting behaviour in an aquatic apex predator, Northern pike (Esox lucius; hereafter pike) present in the lakes. Behaviour of pike was studied with whole-lake acoustic telemetry tracking, supplemented by stable isotope analysis of pike prey utilization and survey fishing data on the prey fish community. Pike displayed increased activity, space use, individual growth as well as behavioural differentiation and spent more time in open waters in the LSC lake. Despite observed differences between lakes, stable isotopes analyses indicated a high dependency on littoral food sources in both lakes. We concluded that pike in the HSC lake displayed a behaviour consistent with a prevalent ambush predation behaviour, whereas the higher activity and larger space use in the LSC lake indicated a transition to more active search behaviour. It could lead to increased prey encounter and cause better growth in the LSC lake. Our study demonstrated how differences in structural complexity mediated prominent changes in the foraging behaviour of an apex predator, which in turn may have effects on the prey community.
Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
Zobrazit více v PubMed
Kerr JT, Packer L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature. 1997;385:252–254. doi: 10.1038/385252a0. DOI
Kovalenko KE, Thomaz SM, Warfe DM. Habitat complexity: Approaches and future directions. Hydrobiologia. 2012;685:1–17. doi: 10.1007/s10750-011-0974-z. DOI
Stein A, Gerstner K, Kreft H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014;17:866–880. doi: 10.1111/ele.12277. PubMed DOI
Willis SC, Winemiller KO, Lopez-Fernandez H. Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia. 2005;142:284–295. doi: 10.1007/s00442-004-1723-z. PubMed DOI
Denno RF, Finke D, Langellotto GA. Direct and indirect effects of vegetation structure and habitat complexity on predator-prey and predator-predator interactions. In: Barbosa P, Castellanos I, editors. Ecology of Predator-Prey Interactions. Oxford University Press; 2005. pp. 211–239.
Olsson K, Nyström P. Non-interactive effects of habitat complexity and adult crayfish on survival and growth of juvenile crayfish ( Pacifastacus leniusculus ) Freshw. Biol. 2009;54:35–46. doi: 10.1111/j.1365-2427.2008.02089.x. DOI
DeBoom CS, Wahl DH. Effects of coarse woody habitat complexity on predator-prey interactions of four freshwater fish species. Trans. Am. Fish. Soc. 2013;142:1602–1614. doi: 10.1080/00028487.2013.820219. DOI
Schmitz OJ. Behaviour of predators and prey and links with population-level processes. In: Barbosa P, Castellanos I, editors. Ecology of Predator-Prey Interactions. Oxford University Press; 2005. pp. 256–279.
Savino JF, Stein RA. Behavioural interactions between fish predators and their prey: Effects of plant density. Anim. Behav. 1989;37:311–321. doi: 10.1016/0003-3472(89)90120-6. DOI
Laurel BJ, Brown JA. Influence of cruising and ambush predators on 3-dimensional habitat use in age 0 juvenile Atlantic cod Gadus morhua. J. Exp. Mar. Bio. Ecol. 2006;329:34–46. doi: 10.1016/j.jembe.2005.08.003. DOI
Pamala JL, Heck KL. The effects of habitat complexity and light intensity on ambush predation within a simulated seagrass habitat. J. Exp. Mar. Bio. Ecol. 1994;176:187–200. doi: 10.1016/0022-0981(94)90184-8. DOI
Michel MJ, Adams MM. Differential effects of structural complexity on predator foraging behavior. Behav. Ecol. 2009;20:313–317. doi: 10.1093/beheco/arp005. DOI
Towner AV, et al. Sex-specific and individual preferences for hunting strategies in white sharks. Funct. Ecol. 2016;30:1397–1407. doi: 10.1111/1365-2435.12613. DOI
Nakayama, S., Laskowski, K. L., Klefoth, T. & Arlinghaus, R. Between- and within-individual variation in activity increases with water temperature in wild perch. Behav. Ecol., arw090 (2016).
Araújo MS, Bolnick DI, Layman CA. The ecological causes of individual specialisation. Ecol. Lett. 2011;14:948–958. doi: 10.1111/j.1461-0248.2011.01662.x. PubMed DOI
Ryer CH, Olla BL. The influence of food distribution upon the development of aggressive and competitive behaviour in juvenile chum salmon, Oncorhynchus keta. J. Fish Biol. 1995;46:264–272. doi: 10.1111/j.1095-8649.1995.tb05967.x. DOI
Vejříková I, et al. Macrophytes shape trophic niche variation among generalist fishes. PLoS ONE. 2017;12:1–13. doi: 10.1371/journal.pone.0177114. PubMed DOI PMC
Paz Cardozo AL, Quirino BA, Yofukuji KY, Ferreira Aleixo MH, Fugi R. Habitat complexity and individual variation in diet and morphology of a fish species associated with macrophytes. Ecol. Freshw. Fish. 2020 doi: 10.1111/eff.12574. DOI
Carpenter SR, Kitchell JF, Hodgson JR. Cascading trophic interactions and lake productivity. Bioscience. 1985;35:634–639. doi: 10.2307/1309989. DOI
Start D, Gilbert B. Predator personality structures prey communities and trophic cascades. Ecol. Lett. 2017;20:366–374. doi: 10.1111/ele.12735. PubMed DOI
Laskowski KL, et al. Behaviour in a standardized assay, but not metabolic or growth rate, predicts behavioural variation in an adult aquatic top predator Esox lucius in the wild. J. Fish Biol. 2016;88:1544–1563. doi: 10.1111/jfb.12933. PubMed DOI
Hussey NE, et al. Aquatic animal telemetry: A panoramic window into the underwater world. Science. 2015;348:1255642. doi: 10.1126/science.1255642. PubMed DOI
Monk CT, et al. Behavioural and fitness effects of translocation to a novel environment: Whole-lake experiments in two aquatic top predators. J. Anim. Ecol. 2020 doi: 10.1111/1365-2656.13298. PubMed DOI
Forsman A, et al. Pike Esox lucius as an emerging model organism for studies in ecology and evolutionary biology: A review. J. Fish Biol. 2015;87:472–479. doi: 10.1111/jfb.12712. PubMed DOI PMC
Skov C, Lucas MC, Jacobsen L. Spatial ecology. In: Skov C, Nilsson PA, editors. Biology and Ecology of Pike. CRC Press; 2018. pp. 91–128.
Craig JF. A short review of pike ecology. Hydrobiologia. 2008;601:5–16. doi: 10.1007/s10750-007-9262-3. DOI
Byström P, et al. Substitution of top predators: Effects of pike invasion in a subarctic lake. Freshw. Biol. 2007;52:1271–1280. doi: 10.1111/j.1365-2427.2007.01763.x. DOI
Sandlund OT, Museth J, Øistad S. Migration, growth patterns, and diet of pike (Esox lucius) in a river reservoir and its inflowing river. Fish. Res. 2016;173:53–60. doi: 10.1016/j.fishres.2015.08.010. DOI
Jacobsen L, et al. Pike (Esox lucius L.) on the edge: Consistent individual movement patterns in transitional waters of the western Baltic. Hydrobiologia. 2017;784:143–154. doi: 10.1007/s10750-016-2863-y. DOI
Nyqvist MJ, Cucherousset J, Gozlan RE, Beaumont WRC, Britton JR. Dispersal strategies of juvenile pike (Esox lucius L.): Influences and consequences for body size, somatic growth and trophic position. Ecol. Freshw. Fish. 2020;29:377–383. doi: 10.1111/eff.12521. DOI
Kobler A, Klefoth T, Mehner T, Arlinghaus R. Coexistence of behavioural types in an aquatic top predator: A response to resource limitation? Oecologia. 2009;161:837–847. doi: 10.1007/s00442-009-1415-9. PubMed DOI
Eklöv P. Effects of habitat complexity and prey abundance on the spatial and temporal distributions of perch (Perca fluviatilis) and pike (Esox lucius) Can. J. Fish. Aquat. Sci. 1997;54:1520–1531. doi: 10.1139/f97-059. DOI
Vejříková I, et al. Distribution of herbivorous fish is frozen by low temperature. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep39600. PubMed DOI PMC
Eloranta AP, et al. Some like it deep: Intraspecific niche segregation in ruffe (Gymnocephalus cernua) Freshw. Biol. 2017;62:1401–1409. doi: 10.1111/fwb.12953. DOI
Vejřík L, et al. European catfish (Silurus glanis) as a freshwater apex predator drives ecosystem via its diet adaptability. Sci. Rep. 2017;7:1–15. doi: 10.1038/s41598-017-16169-9. PubMed DOI PMC
Pierce RB, Carlson AJ, Carlson BM, Hudson D, Staples DF. Depths and thermal habitat used by large versus small Northern pike in three Minnesota lakes. Trans. Am. Fish. Soc. 2013;142:1629–1639. doi: 10.1080/00028487.2013.822422. DOI
Baktoft H, et al. Seasonal and diel effects on the activity of northern pike studied by high-resolution positional telemetry. Ecol. Freshw. Fish. 2012;21:386–394. doi: 10.1111/j.1600-0633.2012.00558.x. DOI
CEN. EN 14 757, CEN TC 230, Water quality: Sampling fish with Multimesh gillnets. (2005).
Prchalová M, et al. Fish activity as determined by gillnet catch: A comparison of two reservoirs of different turbidity. Fish. Res. 2010;102:291–296. doi: 10.1016/j.fishres.2009.12.011. DOI
Prchalová M, et al. Size selectivity of standardized multimesh gillnets in sampling coarse European species. Fish. Res. 2009;96:51–57. doi: 10.1016/j.fishres.2008.09.017. DOI
Balk, H. & Lindem, T. Sonar 4 and Sonar 5-Pro post processing systems. Operator manual 6.0.3. 464 (2014).
Frouzova J, Kubecka J, Balk H, Frouz J. Target strength of some European fish species and its dependence on fish body parameters. Fish. Res. 2005;75:86–96. doi: 10.1016/j.fishres.2005.04.011. DOI
Baktoft H, Gjelland KØ, Økland F, Thygesen UH. Positioning of aquatic animals based on time-of-arrival and random walk models using YAPS (Yet Another Positioning Solver) Sci. Rep. 2017;7:1–10. doi: 10.1038/s41598-017-14278-z. PubMed DOI PMC
Noonan, M. J. et al. The fast and the spurious: Scale-free estimation of speed and distance traveled from animal tracking data. 1–15 (2019). PubMed PMC
Bivand, R. S. & Lewin-Koh, N. maptools: Tools for reading and handling spatial objects. (2015).
Calenge, C. & Fortmann-Roe, S. Home range estimation in R: The adehabitatHR package. (2019).
Nordahl O, Koch-Schmidt P, Tibblin P, Forsman A, Larsson P. Vertical movements of coastal pike ( Esox lucius )—On the role of sun basking. Ecol. Freshw. Fish. 2020;29:18–30. doi: 10.1111/eff.12484. DOI
Boecklen WJ, Yarnes CT, Cook BA, James AC. On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 2011;42:411–440. doi: 10.1146/annurev-ecolsys-102209-144726. DOI
Layman CA, et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 2012;87:545–562. doi: 10.1111/j.1469-185X.2011.00208.x. PubMed DOI
Post DM. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology. 2002;83:703–718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2. DOI
Francis RICC. Back-calculation of fish length: A critical review. J. Fish Biol. 1990;36:883–902. doi: 10.1111/j.1095-8649.1990.tb05636.x. DOI
Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI
Liaw A, Wiener M. Classification and regression by randomForest. R news. 2002;2:18–22.
Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: Linear and Nonlinear Mixed Effects Models. (2020).
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer Science & Business Media, 2009).
Gelman A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 2008;27:2865–2873. doi: 10.1002/sim.3107. PubMed DOI
Gelman A. Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. 2010;85:935–956. PubMed
Ripley, B. D. Selecting amongst large classes of models. In Methods and Models in Statistics: In Honour of Professor John Nelder 155–170 (FRS, 2004).
Bolker BM, et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 2009;24:127–135. doi: 10.1016/j.tree.2008.10.008. PubMed DOI
Ospina R, Ferrari SLP. Inflated beta distributions. Stat Pap. 2010;51:111–126. doi: 10.1007/s00362-008-0125-4. DOI
Ospina R, Ferrari SLP. A general class of zero-or-one inflated beta regression models. Comput. Stat. Data Anal. 2012;56:1609–1623. doi: 10.1016/j.csda.2011.10.005. DOI
Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C (Applied Stat.) 2005;54:507–554. doi: 10.1111/j.1467-9876.2005.00510.x. DOI
Stasinopoulos DM, Rigby RA. Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 2007;23:1–46. doi: 10.18637/jss.v023.i07. DOI
Kinney MJ, Kacev D, Kohin S, Eguchi T. An analytical approach to sparse telemetry data. PLoS One. 2017;12:e0188660. doi: 10.1371/journal.pone.0188660. PubMed DOI PMC
Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. (Springer-Verlag, 2002).
Box, G. E., Jenkins, G. M. & Reinsel, G. C. Time series analysis: Forecasting and control. (Prentice Hall, 1994).
Burnham KP, Anderson DR. Multimodel Inference. Sociol. Methods Res. 2004;33:261–304. doi: 10.1177/0049124104268644. DOI
Mazerolle, M. J. AICcmodavg: model selection and multimodel inference based on (Q) AIC (c). R package ver. 2.0-4 (2016).
Barton, K. MuMIn: multi-model inference. R package. (2018).
Davy CM, Paterson JE, Leifso AE. When righting is wrong: Performance measures require rank repeatability for estimates of individual fitness. Anim. Behav. 2014;93:15–23. doi: 10.1016/j.anbehav.2014.04.013. DOI
Hansen EA, Closs GP. Diel activity and home range size in relation to food supply in a drift-feeding stream fish. Behav. Ecol. 2005;16:640–648. doi: 10.1093/beheco/ari036. DOI
McIntosh AR, et al. Capacity to support predators scales with habitat size. Sci. Adv. 2018;4:eaap7523. doi: 10.1126/sciadv.aap7523. PubMed DOI PMC
Steingrímsson SÓ, Grant JWA. Determinants of multiple central-place territory use in wild young-of-the-year Atlantic salmon (Salmo salar) Behav. Ecol. Sociobiol. 2011;65:275–286. doi: 10.1007/s00265-010-1042-9. DOI
Rosten CM, Gozlan RE, Lucas MC. Allometric scaling of intraspecific space use. Biol. Lett. 2016;12:20150673. doi: 10.1098/rsbl.2015.0673. PubMed DOI PMC
Eklöv P. Group foraging versus solitary foraging efficiency in piscivorous predators: The perch, Perca fluviatilis, and pike, Esox lucius, patterns. Anim. Behav. 1992;44:313–326. doi: 10.1016/0003-3472(92)90037-A. DOI
Diana JS, Mackay WC, Ehrman M. Movements and habitat preference of northern pike (Esox lucius) in Lac Ste. Anne. Alberta. Trans. Am. Fish. Soc. 1977;106:560–565. doi: 10.1577/1548-8659(1977)106<560:MAHPON>2.0.CO;2. DOI
Nilsson PA, et al. Visibility conditions and diel period affect small-scale spatio-temporal behaviour of pike Esox lucius in the absence of prey and conspecifics. J. Fish Biol. 2012;80:2384–2389. doi: 10.1111/j.1095-8649.2012.03284.x. PubMed DOI
Fausch KD, Nakano S, Kitano S. Experimentally induced foraging mode shift by sympatric charrs in a Japanese mountain stream. Behav. Ecol. 1997;8:414–420. doi: 10.1093/beheco/8.4.414. DOI
Norberg RA. An ecological theory on foraging time and energetics and choice of optimal food-searching method. J. Anim. Ecol. 1977;46:511. doi: 10.2307/3827. DOI
Helfman GS. Mode selection and mode switching in foraging animals. Adv. Study Behav. 1990;19:249–298. doi: 10.1016/S0065-3454(08)60205-3. DOI
Killen SS, Brown JA, Gamperl KA. The effect of prey density on foraging mode selection in juvenile lumpfish: Balancing food intake with the metabolic cost of foraging. J. Anim. Ecol. 2007;76:814–825. doi: 10.1111/j.1365-2656.2007.01237.x. PubMed DOI
Ahrenstorff TD, Sass GG, Helmus MR. The influence of littoral zone coarse woody habitat on home range size, spatial distribution, and feeding ecology of largemouth bass (Micropterus salmoides) Hydrobiologia. 2009;623:223–233. doi: 10.1007/s10750-008-9660-1. DOI
Enefalk Å, Bergman E. Effect of fine wood on juvenile brown trout behaviour in experimental stream channels. Ecol. Freshw. Fish. 2016;25:664–673. doi: 10.1111/eff.12244. DOI
Church KDW, Grant JWA. Does increasing habitat complexity favour particular personality types of juvenile Atlantic salmon, Salmo salar? Anim. Behav. 2018;135:139–146. doi: 10.1016/j.anbehav.2017.11.006. DOI
Webb PW. Body Form, locomotion and foraging in aquatic vertebrates. Am. Zool. 1984;24:107–120. doi: 10.1093/icb/24.1.107. DOI
Nakano S, Fausch KD, Kitano S. Flexible niche partitioning via a foraging mode shift: A proposed mechanism for coexistence in stream-dwelling charts. J. Anim. Ecol. 1999;68:1079–1092. doi: 10.1046/j.1365-2656.1999.00355.x. DOI
Tracey JA, et al. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation. PLoS ONE. 2014;9:e101205. doi: 10.1371/journal.pone.0101205. PubMed DOI PMC
Brodersen J, Howeth JG, Post DM. Emergence of a novel prey life history promotes contemporary sympatric diversification in a top predator. Nat. Commun. 2015;6:1–9. doi: 10.1038/ncomms9115. PubMed DOI
Lucas MC, Priede IG, Armstrong JD, Gindy ANZ, Vera L. Direct measurements of metabolism, activity and feeding behaviour of pike, Esox Zucius L., in the wild, by the use of heart rate telemetry. J. Fish Biol. 1991;39:325–345. doi: 10.1111/j.1095-8649.1991.tb04366.x. DOI
Ioannou CC, Ruxton GD, Krause J. Search rate, attack probability, and the relationship between prey density and prey encounter rate. Behav. Ecol. 2008;19:842–846. doi: 10.1093/beheco/arn038. DOI
Nyqvist MJ, Cucherousset J, Gozlan RE, Britton JR. Relationships between individual movement, trophic position and growth of juvenile pike (Esox lucius) Ecol. Freshw. Fish. 2018;27:398–407. doi: 10.1111/eff.12355. DOI
Monk, C. T. et al. The battle between harvest and natural selection creates small and shy fish. Proc. Natl. Acad. Sci. U. S. A.118, (2021). PubMed PMC