European catfish (Silurus glanis) as a freshwater apex predator drives ecosystem via its diet adaptability
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29162872
PubMed Central
PMC5698325
DOI
10.1038/s41598-017-16169-9
PII: 10.1038/s41598-017-16169-9
Knihovny.cz E-zdroje
- MeSH
- biomasa MeSH
- dieta * MeSH
- ekosystém * MeSH
- Esocidae fyziologie MeSH
- fyziologická adaptace * MeSH
- izotopy dusíku MeSH
- izotopy uhlíku MeSH
- jezera MeSH
- potravní řetězec MeSH
- predátorské chování fyziologie MeSH
- preference v jídle MeSH
- roční období MeSH
- sladká voda * MeSH
- sumci fyziologie MeSH
- žaludek fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- izotopy dusíku MeSH
- izotopy uhlíku MeSH
Apex predators play a key role in ecosystem stability across environments but their numbers in general are decreasing. By contrast, European catfish (Silurus glanis), the European freshwater apex predator, is on the increase. However, studies concerning apex predators in freshwaters are scarce in comparison to those in terrestrial and marine ecosystems. The present study combines stomach content and stable isotope analyses with diet preferences of catfish to reveal its impact on the ecosystem since stocking. Catfish niche width is extremely wide in comparison to the typical model predator, Northern pike (Esox lucius). Catfish and pike have different individual dietary specialization that results in different functional roles in coupling or compartmentalizing distinct food webs. The role of both species in the ecosystem is irreplaceable due to multiple predator effects. The impact of catfish is apparent across the entire aquatic ecosystem, but herbivores are the most affected ecological group. The key feature of catfish, and probably a common feature of apex predators in general, is utilization of several dietary strategies by individuals within a population: long-term generalism or specialization and also short-term specialization. Catfish, similar to other large-bodied apex predators, have two typical features: enormous generalism and adaptability to new prey sources.
Zobrazit více v PubMed
Sergio F, Newton I, Marchesi L, Pedrini P. Ecologically justified charisma: preservation of top predators delivers biodiversity conservation. J. Appl. Ecol. 2006;43:1049–1055. doi: 10.1111/j.1365-2664.2006.01218.x. DOI
Estes JA, et al. Trophic downgrading of planet Earth. Science. 2011;333:301–306. doi: 10.1126/science.1205106. PubMed DOI
Ripple WJ, et al. Status and ecological effects of the world’s largest carnivores. Science. 2014;343:1241484. doi: 10.1126/science.1241484. PubMed DOI
Sinclair ARE, Mduma S, Brashares JS. Patterns of predation in a diverse predator-prey system. Nature. 2003;425:288–290. doi: 10.1038/nature01934. PubMed DOI
Foote AD, Newton J, Piertney SB, Willerslev E, Gilbert MTP. Ecological, morphological and genetic divergence of sympatric North Atlantic killer whale populations. Mol. Ecol. 2009;18:5207–5217. doi: 10.1111/j.1365-294X.2009.04407.x. PubMed DOI
Ferguson, S. H., Higdon J. W. & Westdal, K. H. Prey items and predation behavior of killer whales (Orcinus orca) in Nunavut, Canada based on Inuit hunter interviews. Aquat. Biosyst. 8, 10.1186/2046-9063-8-3 (2012). PubMed PMC
Rosenblatt AE, et al. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia. 2015;178:5–16. doi: 10.1007/s00442-014-3201-6. PubMed DOI
Rooney N, McCann KS, Gellner G, Moore JC. Structural asymmetry and the stability of diverse food webs. Nature. 2006;442:265–269. doi: 10.1038/nature04887. PubMed DOI
Rooney N, McCann KS, Moore JC. A landscape theory for food web architecture. Ecol. Lett. 2008;11:867–881. doi: 10.1111/j.1461-0248.2008.01193.x. PubMed DOI
Matich P, Heithaus MR, Layman CA. Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J. Anim. Ecol. 2011;80:294–305. doi: 10.1111/j.1365-2656.2010.01753.x. PubMed DOI
Baird RW, Whitehead H. Social organization of mammal-eating killer whales: group stability and dispersal patterns. Can. J. Zool. 2000;78:2096–2105. doi: 10.1139/z00-155. DOI
Araújo MS, Bolnick DI, Layman CA. The ecological causes of individual specialisation: the causes of individual specialisation. Ecol. Lett. 2011;14:948–958. doi: 10.1111/j.1461-0248.2011.01662.x. PubMed DOI
Dall S, Bell AM, Bolnick DI, Ratnieks FLW. An evolutionary ecology of individual differences. Ecol. Lett. 2012;15:1189–1198. doi: 10.1111/j.1461-0248.2012.01846.x. PubMed DOI PMC
Estes JA, Tinker MT, Williams TM, Doak DF. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science. 1998;282:473–476. doi: 10.1126/science.282.5388.473. PubMed DOI
Prugh RL, et al. The rise of the mesopredator. BioScience. 2009;59:779–791. doi: 10.1525/bio.2009.59.9.9. DOI
Myers RA, Baum JK, Shepherd TD, Powers SP, Peterson CH. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science. 2007;315:1846–1850. doi: 10.1126/science.1138657. PubMed DOI
Baum JK, Worm B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 2009;78:699–714. doi: 10.1111/j.1365-2656.2009.01531.x. PubMed DOI
Brashares, J. S., Prugh, L. R., Stoner, C. J. & Epps, C. W. Ecological and conservation implications of mesopredator release. In Terborgh, J., Estes, J. A., eds. Trophic Cascades. Island Press. Forthcoming (2010).
Dudgeon D, et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 2006;81:163–182. doi: 10.1017/S1464793105006950. PubMed DOI
Veit RR, Mcgowan JA, Ainley DG, Wahl TR, Pyle P. Apex marine predator declines ninety percent in association with changing oceanic chmate. Glob. Change Biol. 1997;3:23–28. doi: 10.1046/j.1365-2486.1997.d01-130.x. DOI
Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 2010;13:1055–1071. PubMed
Stone R. The last of the leviathans. Science. 2007;316:1684–1688. doi: 10.1126/science.316.5832.1684. PubMed DOI
Copp HG, et al. Voracious invader or benign feline? A review of the environmental biology of European catfish Silurus glanis in its native and introduced ranges. Fish. Fish. 2009;10:252–282. doi: 10.1111/j.1467-2979.2008.00321.x. DOI
Carol J, Zamora L, García-Berthou E. Preliminary telemetry data on the movement patterns and habitat use of European catfish (Silurus glanis) in a reservoir of the River Ebro, Spain. Ecol. Freshw. Fish. 2007;16:450–456. doi: 10.1111/j.1600-0633.2007.00225.x. DOI
Cunico AM, Vitule JRS. First records of the European catfish, Silurus glanis Linnaeus, 1758 in the Americas (Brazil) BioInvasions Rec. 2014;3:117–122. doi: 10.3391/bir.2014.3.2.10. DOI
Syväranta J, et al. Dietary breadth and trophic position of introduced European catfish Silurus glanis in the River Tarn (Garonne River basin), southwest France. Aquat. Biol. 2010;8:137–144. doi: 10.3354/ab00220. DOI
Cucherousset J, Boulêtreau S, Azémar F, Compin A, Guillaume M. “Freshwater Killer Whales”: beaching behavior of an alien fish to hunt land birds. PLoS One. 2012;7:e50840. doi: 10.1371/journal.pone.0050840. PubMed DOI PMC
Vejřík L, et al. Thirty-year-old paradigm about unpalatable perch egg strands disclaimed by the freshwater top-predator, the European catfish (Silurus glanis) PLoS One. 2017;12:e0169000. doi: 10.1371/journal.pone.0169000. PubMed DOI PMC
Alp A, Kara C, Buyukcapar HM. Reproductive biology in a native European catfish, Silurus glanis L., 1758, population in Menzelet Reservoir. Turk. J. Vet. Anim. Sci. 2003;28:613–622.
Slavík, O. Behaviour of European catfish in natural conditions and aquaculture (Habilitation Thesis), Czech University of Life Sciences (2013).
Boulêtreau S, Santoul F. The end of the mythical giant catfish. Ecosphere. 2016;7:e01606. doi: 10.1002/ecs2.1606. DOI
Forsman A, et al. Pike Esox lucius as an emerging model organism for studies in ecology and evolutionary biology: a review. J. Fish Biol. 2015;87:472–479. doi: 10.1111/jfb.12712. PubMed DOI PMC
Kottelat, M. & Freyhof, J. Handbook of European freshwater fishes. Cornol:Publications Kottelat. 646 pp. (2007).
Svanbäck R, Persson L. Individual diet specialization, niche width, and population dynamics: implications for trophic polymorphisms. J. Anim. Ecol. 2004;73:973–982. doi: 10.1111/j.0021-8790.2004.00868.x. DOI
Parnell AC, Inger R, Bearhop S, Jackson AL. Source partitioning using stable isotopes: coping with too much variation. PLoS One. 2010;5:e9672. doi: 10.1371/journal.pone.0009672. PubMed DOI PMC
Jackson AL, Inger R, Parnell AC, Bearhop S. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 2011;80:595–602. doi: 10.1111/j.1365-2656.2011.01806.x. PubMed DOI
Ferrero DM, et al. Detection and avoidance of a carnivore odor by prey. Proc. Natl. Acad. Sci. USA. 2011;108:11235–11240. doi: 10.1073/pnas.1103317108. PubMed DOI PMC
Pohlmann K, Atema JW, Breithaupt T. The importance of the lateral line in nocturnal predation of piscivorous catfish. J. Exp. Biol. 2004;207:2971–2978. doi: 10.1242/jeb.01129. PubMed DOI
Hölker F, et al. Species-specific responses of planktivorous fish to the introduction of a new piscivore: implications for prey fitness. Freshw. Biol. 2007;52:1793–1806. doi: 10.1111/j.1365-2427.2007.01810.x. DOI
Herrero MJ, Madrid JA, Sánchez-Vázquez FJ. Entrainment to light of circadian activity rhythms in tench (Tinca tinca) Chronobiol. Int. 2003;20:1001–1017. doi: 10.1081/CBI-120025246. PubMed DOI
Musil M, Buřič M, Policar T, Kouba A, Kozák P. Comparison of day and night activity between noble (Astacus astacus) and spiny-cheek crayfish (Orconectes limosus) Freshwater Crayfish. 2010;17:189–193.
Cook MF, Bergersen EP. Movements, habitat selection, and activity periods of northern pike in Eleven Mile Reservoir, Colorado. Trans. Am. Fish. Soc. 1988;117:495–502. doi: 10.1577/1548-8659(1988)117<0495:MHSAAP>2.3.CO;2. DOI
Wasserman JR, et al. Using functional responses to quantify interaction effects among predators. Funct. Ecol. 2016;30:1988–1998. doi: 10.1111/1365-2435.12682. DOI
Ebensperger LA. Strategies and counterstrategies to infanticide in mammals. Biol. Rev. Camb. Philos. Soc. 1998;73:321–346. doi: 10.1017/S0006323198005209. DOI
Brooks JL, Dodson SI. Predation, body size, and composition of plankton. Science. 1965;150:28–35. doi: 10.1126/science.150.3692.28. PubMed DOI
Vejříková, I. et al. Distribution of herbivorous fish is frozen by low temperature. Sci. Rep. 6, 10.1038/srep39600 (2016). PubMed PMC
Abrams PA. The evolution of predator-prey interactions: theory and evidence. Annu. Rev. Ecol. Evol. Syst. 2000;31:79–105. doi: 10.1146/annurev.ecolsys.31.1.79. DOI
Smith RJF. Testosterone eliminates alarm substance in male fathead minnows. Can. J. Zool. 1973;51:875–876. doi: 10.1139/z73-130. DOI
Magnhagen C. Predation risk as a cost of reproduction. Trends Ecol. Evol. 1991;6:183–186. doi: 10.1016/0169-5347(91)90210-O. PubMed DOI
Day R, et al. Enzymatic digestion in stomachless fishes: how a simple gut accommodates both herbivory and carnivory. J. Comp. Physiol. 2011;181:603–613. doi: 10.1007/s00360-010-0546-y. PubMed DOI
Munro RHM, Nielsen SE, Price MH, Stenhouse GB, Boyce MS. Seasonal and diel patterns of grizzly bear diet and activity in west-central Alberta. J. Mammal. 2006;87:1112–1121. doi: 10.1644/05-MAMM-A-410R3.1. DOI
Vejřík L, et al. Who is who: an anomalous predator-prey role exchange between cyprinids and perch. PLoS One. 2016;11:e0156430. doi: 10.1371/journal.pone.0156430. PubMed DOI PMC
Arrington DA, Winemiller KO, Loftus WF, Akin S. How often do fishes “run on empty”? Ecology. 2002;83:2145–2151.
Nakano S, Murakami M. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. USA. 2001;98:166–170. doi: 10.1073/pnas.98.1.166. PubMed DOI PMC
Peterka, J. Complex fish stock assessment of Most Lake in year 2014. Report of the Biology Centre CAS, Institute of Hydrobiology (in Czech) (2015a).
Kislalioglu M, Gibson RN. Prey “handling-time” and its importance in food selection by the 15-spined stickleback, Spinachi spinachia (L.) J. Exp. Mar. Biol. Ecol. 1976;25:151–158. doi: 10.1016/0022-0981(76)90016-2. DOI
Zaikov A, Iliev I, Hubenova T. Investigation on growth rate and food conversion ratio of wels (Silurus glanis l.) in controlled conditions. Bulg. J. Agric. Sci. 2008;14:171–175.
Peterka, J. Complex fish stock assessment of Milada Lake in year 2014. Report of the Biology Centre, CAS, Institute of Hydrobiology (in Czech) (2015b).
Čech M, Čech P, Kubečka J, Prchalová M, Draštík V. Size selectivity in summer and winter diets of great cormorant (Phalacrocorax carbo): Does it reflect season-dependent difference in foraging efficiency? Waterbirds. 2008;31:438–447. doi: 10.1675/1524-4695-31.3.438. DOI
Post DM, et al. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia. 2007;152:179–189. doi: 10.1007/s00442-006-0630-x. PubMed DOI
Post DM. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology. 2002;83:703–718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2. DOI
R Core Team R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria (2014).
Bolnick DI, Yang LH, Fordyce JA, Davis JM, Svanbäck R. Measuring individual-level ressource specialization. Ecology. 2002;83:2936–2941. doi: 10.1890/0012-9658(2002)083[2936:MILRS]2.0.CO;2. DOI
Ind Spec1: Bolnick D. Center for population biology Store Hall University of California, Davis, USA 530–752–6784 (2002).
Esri, Working with ArcMap. ArcGIS Help 10.2.2. (2016). Available at: http://resources.arcgis.com/en/help/main/10.2/#/Mapping_and_visualization_in_ArcGIS_for_Desktop/018q00000004000000/ (Accessed: 26th June 2017). DOI
Contrasting structural complexity differentiate hunting strategy in an ambush apex predator
Can species-specific prey responses to chemical cues explain prey susceptibility to predation?