Predicting the potential implications of perch (Perca fluviatilis) introductions to a biodiversity-rich lake using stable isotope analysis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37848487
PubMed Central
PMC10582113
DOI
10.1038/s41598-023-44865-2
PII: 10.1038/s41598-023-44865-2
Knihovny.cz E-zdroje
- MeSH
- Cyprinidae * MeSH
- ekosystém MeSH
- izotopy dusíku MeSH
- jezera MeSH
- lidé MeSH
- okounovití * MeSH
- predátorské chování MeSH
- sumci * MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- izotopy dusíku MeSH
Biological invasions, particularly of fish species, significantly threaten aquatic ecosystems. Among these invaders, the introduction of the European perch (Perca fluviatilis) can have particularly detrimental effects on native communities, affecting both ecosystem functioning and human well-being. In this study, carbon and nitrogen stable isotope analysis was employed, using perch originating from five different ecosystems, to model the effects of their hypothetical introduction into İznik Lake, an economically and ecologically important, biodiversity-rich lake in northern Turkey, to ultimately assess their potential predation impact and competition with native predators. The results revealed that if perch were introduced to the community, they would - considering gape size limitations - primarily prey upon Vimba vimba and Rutilus rutilus, indicating a significant feeding pressure on these species. Furthermore, the study identified a potential overlap and competition for resources between commonly mesopredator perch and the European catfish Silurus glanis, the current top predator in the ecosystem. Both species would occupy top predatory positions, emphasizing the potential disruption of predator-prey dynamics. Our findings underscore the potential ecological repercussions of perch invasions. The selective predation on V. vimba and R. rutilus, with the latter being consumed to a lesser extent by perch, could lead to cascading effects throughout the food web, altering the community structure, and ecosystem dynamics. Additionally, the competition between perch and S. glanis raises concerns about effects on the stability and functioning of the fish community. These results highlight the need for proactive management strategies to mitigate the risk of perch introductions. Strict regulations on the movement and introduction of invasive species, along with comprehensive monitoring, are crucial for preserving native communities and maintaining the ecological integrity of freshwater ecosystems. Our study demonstrates the potential predation impact of perch on vulnerable fish species and the competition with the established apex predator, emphasizing the importance of considering the ecological consequences of perch invasions and informing management decisions to ensure the conservation and sustainability of aquatic ecosystems.
Department of Basic Sciences Faculty of Fisheries Muğla Sıtkı Koçman University Menteşe Muğla Turkey
Department of Biology Faculty of Science Eskişehir Osmangazi University Eskişehir Turkey
Department of Environmental Protection Technologies Eskişehir Osmangazi University Eskişehir Turkey
Vocational School of Health Services Eskişehir Osmangazi University Eskişehir Turkey
Zobrazit více v PubMed
Poulin R, Paterson RA, Townsend CR, Tompkins DM, Kelly DW. Biological invasions and the dynamics of endemic diseases in freshwater ecosystems. Freshw. Biol. 2011;56(4):676–688. doi: 10.1111/j.1365-2427.2010.02425.x. DOI
Cassini MH. A review of the critics of invasion biology. Biol. Rev. 2020;95(5):1467–1478. doi: 10.1111/brv.12624. PubMed DOI
Gozlan RE, Britton JR, Cowx I, Copp GH. Current knowledge on non-native freshwater fish introductions. J. Fish Biol. 2010;76(4):751–786. doi: 10.1111/j.1095-8649.2010.02566.x. DOI
Haubrock PJ, et al. Invasion impacts and dynamics of a European-wide introduced species. Glob. Change Biol. 2022;28(15):4620–4632. doi: 10.1111/gcb.16207. PubMed DOI
Blackburn TM, et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 2011;26(7):333–339. doi: 10.1016/j.tree.2011.03.023. PubMed DOI
Warren RJ, et al. Release from intraspecific competition promotes dominance of a non-native invader. Biol. Invasions. 2019;21:895–909. doi: 10.1007/s10530-018-1868-z. DOI
Marr SM, et al. A global assessment of freshwater fish introductions in mediterranean-climate regions. Hydrobiologia. 2013;719:317–329. doi: 10.1007/s10750-013-1486-9. DOI
Fricke R, Bilecenoğlu M, Sarı HM. Annotated checklist of fish and lamprey species (Gnathostomata and Petromyzontomorphi) of Turkey, including a Red List of threatened and declining species. Stuttg. Beitr. Naturkd. 2007;706:1–172.
Tarkan AS, Marr SM, Ekmekçi FG. Non-native and translocated freshwater fish. FISHMED Fish. Mediterr. Environ. 2015;3:1–28. doi: 10.29094/FiSHMED.2015.003. DOI
Tarkan AS, et al. Identification of potentially invasive freshwater fishes, including translocated species, in Turkey using the aquatic species invasiveness screening kit (AS-ISK) Int. Rev. Hydrobiol. 2017;102:47–56. doi: 10.1002/iroh.201601877. DOI
Çiçek E, Sungur S, Fricke R. Freshwater lampreys and fishes of Turkey; a revised and updated annotated checklist 2020. Zootaxa. 2020;4809(2):241–270. doi: 10.11646/zootaxa.4809.2.2. PubMed DOI
Copp GH, et al. To be, or not to be, a non-native freshwater fish? J. Appl. Ichthyol. 2005;21:242–262. doi: 10.1111/j.1439-0426.2005.00690.x. DOI
Hodder KH, Bullock JM. Translocation of native species in the UK: Implications for biodiversity. J. Appl. Ecol. 1997;34:547–565. doi: 10.2307/2404906. DOI
Glamuzina B, et al. Comparison of taxon-specific and taxon-generic risk screening tools for identifying potentially invasive non-native fishes in the River Neretva catchment (Bosnia & Herzegovina and Croatia) River Res. Appl. 2017 doi: 10.1002/rra.3124. DOI
Piria M, et al. Risk screening of non-native freshwater fishes in Croatia and Slovenia using FISK (Fish Invasiveness Screening Kit) Fish. Manag. Ecol. 2016;23:21–31. doi: 10.1111/fme.12147. DOI
Vander Zanden MJ, Olden JD. A management framework for preventing the secondary spread of aquatic invasive species. Can. J. Fish. Aquat. Sci. 2008;65:1512–1522. doi: 10.1139/F08-099. DOI
Tricarico E. A review on pathways and drivers of use regarding non-native freshwater fish introductions in the Mediterranean region. Fish. Manag. Ecol. 2012;19:133–141. doi: 10.1111/j.1365-2400.2011.00834.x. DOI
Strayer DL. Alien species in fresh waters: Ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 2010;55:152–174. doi: 10.1111/j.1365-2427.2009.02380.x. DOI
Simberloff D, et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013;28:58–66. doi: 10.1016/j.tree.2012.07.013. PubMed DOI
Haubrock PJ, et al. Predicting the effects of reintroducing a native predator (European eel, Anguilla anguilla) into a freshwater community dominated by alien species using a multidisciplinary approach. Manag. Biol. Invasions. 2019;10(1):171–191. doi: 10.3391/mbi.2019.10.1.11. DOI
Sih A, et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos. 2010;119(4):610–621. doi: 10.1111/j.1600-0706.2009.18039.x. DOI
Balzani P, Gozlan RE, Haubrock PJ. Overlapping niches between two co-occurring invasive fish: The topmouth gudgeon Pseudorasbora parva and the common bleak Alburnus alburnus. J. Fish Biol. 2020;97(5):1385–1392. doi: 10.1111/jfb.14499. PubMed DOI
Elvira B, Almodóvar A. Freshwater fish introductions in Spain: Facts and figures at the beginning of the 21st century. J. Fish Biol. 2001;59:323–331. doi: 10.1111/j.1095-8649.2001.tb01393.x. DOI
Bakiu R, et al. Invasiveness assessment of European perch (Perca fluviatilis), pike-perch (Sander lucioperca) and northern pike (Esox lucius) in Albanian freshwater ecosystems by using the aquatic species invasiveness screening kit (AS-ISK) Stud. Mar. 2022;35(2):12–18. doi: 10.5281/zenodo.7414001. DOI
Freyhof, J. & Kottelat, M. Perca fluviatilis. The IUCN Red List of Threatened Species 2008: e.T16580A6135168. 10.2305/IUCN.UK.2008.RLTS.T16580A6135168.en. (Accessed 10 June 2023) (2008).
Adámek Z, Musil J, Sukop I. Diet composition and selectivity in O+ perch (Perca fluviatilis L.) and its competition with adult fish and carp (Cyprinus carpio L.) stock in pond culture. Agric. Conspec. Sci. 2004;69(1):21–27.
Vejřík L, et al. European catfish (Silurus glanis) as a freshwater apex predator drives ecosystem via its diet adaptability. Sci. Rep. 2017;7:15970. doi: 10.1038/s41598-017-16169-9. PubMed DOI PMC
Šmejkal M, Ricard D, Sajdlová Z, et al. Can species-specific prey responses to chemical cues explain prey susceptibility to predation? Ecol. Evol. 2018;8:4544–4551. doi: 10.1002/ece3.4000. PubMed DOI PMC
Hempel M, Neukamm R, Thiel R. Effects of introduced round goby (Neogobius melanostomus) on diet composition and growth of zander (Sander lucioperca), a main predator in European brackish waters. Aquat. Invasions. 2016;11:167–178. doi: 10.3391/ai.2016.11.2.06. DOI
Cucherousset J, et al. Using stable isotope analyses to determine the ecological effects of non-native fishes. Fish. Manag. Ecol. 2012;19:111–119. doi: 10.1111/j.1365-2400.2011.00824.x. DOI
Trueman CN, MacKenzie KM, Palmer MR. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish Biol. 2012;81:826–847. doi: 10.1111/j.1095-8649.2012.03361.x. PubMed DOI
Haubrock PJ, et al. Spatio-temporal niche plasticity of a freshwater invader as a harbinger of impact variability. Sci. Total Environ. 2021;777:145947. doi: 10.1016/j.scitotenv.2021.145947. PubMed DOI
Boecklen WJ, Yarnes CT, Cook BA, James AC. On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 2011;42:411–440. doi: 10.1146/annurev-ecolsys-102209-144726. DOI
Post DM. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology. 2002;83:703–718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2. DOI
Balzani P, Haubrock PJ. Expanding the invasion toolbox: Including stable isotope analysis in risk assessment. NeoBiota. 2022;76:191–210. doi: 10.3897/neobiota.76.77944. DOI
Top Karakuş N, Tarkan AS. Does non-native pumpkinseed Lepomis gibbosus affect endemic algae-scraping Capoeta aydinensis in case of introduction to a small stream? An ex-situ growth experiment. Ecol. Freshw. Fish. 2022;31:81–86. doi: 10.1111/eff.12614. DOI
Emiroğlu Ö, Aksu S, Başkurt S, Britton JR, Tarkan AS. Predicting how climate change and globally invasive piscivorous fishes will interact to threaten populations of endemic fishes in a freshwater biodiversity hotspot. Biol. Invasions. 2023;25:1907–1920. doi: 10.1007/s10530-023-03016-4. DOI
Jacobson P, Bergström U, Eklöf J. Size-dependent diet composition and feeding of Eurasian perch (Perca fluviatilis) and northern pike (Esox lucius) in the Baltic Sea. Boreal Environ. Res. 2019;24:137–153.
Persson L, Eklov P. Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology. 1995;76:70–81. doi: 10.2307/1940632. DOI
Persson L, De Roos AM, Byström P. State-dependent invasion windows for prey in size-structured predator-prey systems: Whole lake experiments. J. Anim. Ecol. 2007;76:94–104. doi: 10.1111/j.1365-2656.2006.01190.x. PubMed DOI
Dörner H, Wagner A. Size-dependent predator-prey relationships between perch and their fish prey. J. Fish Biol. 2003;62:1021–1032. doi: 10.1046/j.1095-8649.2003.00092.x. DOI
Hayden B, et al. Trophic flexibility by roach Rutilus rutilus in novel habitats facilitates rapid growth and invasion success. J. Fish Biol. 2014;84(4):1099–1116. doi: 10.1111/jfb.12351. PubMed DOI
Đikanović, V., Čanak Atlagić, J., Zorić, K., Ilić, M. & Skorić, S. The diet of 22 fish species in the Belgrade sector of the Danube River. In Abstracts of the 3rd CESAMIR, Central Europen Symposium for Aquatic Macroinvertebrates Research, 99–99. Department of Invertebrate Zoology & Hydrobiology University of Łódź (2018).
Ostaszewska T, Dabrowski K, Hliwa P, Gomółka P, Kwasek K. Nutritional regulation of intestine morphology in larval cyprinid fish, silver bream (Vimba vimba) Aquac. Res. 2008;39(12):1268–1278. doi: 10.1111/j.1365-2109.2008.01989.x. DOI
Özuluğ M, Altun Ö, Meriç N. On the fish fauna of İznik Lake (Turkey) Turk. J. Zool. 2005;29:371–375.
Prchalová M, et al. The effect of depth, distance from dam and habitat on spatial distribution of fish in an artificial reservoir. Ecol. Freshw. Fish. 2009;18:247–260. doi: 10.1111/j.1600-0633.2008.00342.x. DOI
Truemper HA, Lauer TE. Gape limitation and piscine prey size-selection by yellow perch in the extreme southern area of Lake Michigan, with emphasis on two exotic prey items. J. Fish Biol. 2005;66:135–149. doi: 10.1111/j.0022-1112.2005.00588.x. DOI
Mihalitsis M, Bellwood DR. A morphological and functional basis for maximum prey size in piscivorous fishes. PLoS One. 2017;12(9):e0184679. doi: 10.1371/journal.pone.0184679. PubMed DOI PMC
Blanco-Garrido F, Clavero M, Prenda J. Jarabugo (Anaecypris hispanica) and freshwater blenny (Salaria fluviatilis): Habitat preferences and relationship with exotic fish species in the middle Guadiana basin. Limnetica. 2009;28(1):139–148. doi: 10.23818/limn.28.10. DOI
Murphy CA, Grenouillet G, García-Berthou E. Natural abiotic factors more than anthropogenic perturbation shape the invasion of Eastern Mosquito fish (Gambusia holbrooki) Freshw. Sci. 2015;34(3):965–974. doi: 10.1086/681948. DOI
Kaya, C. Taxonomic revision of the species belong to genus Capoeta distributed in Turkey. PhD Thesis. Recep Tayyip Erdogan University, Institute of Science and Technology, 126 (2019).
Kurtul I, Tarkan AS, Sarı HM, Britton JR. Climatic and geographic variation as a driver of phenotypic divergence in reproductive characters and body sizes of invasive Gambusia holbrooki. Aquat. Sci. 2022;84:29. doi: 10.1007/s00027-022-00862-7. DOI
Top N, Karakuş U, Tepeköy EG, Britton JR, Tarkan AS. Plasticity in habitat preferences of two native Ponto-Caspian gobies, Proterorhinus semilunaris and Neogobius fluviatilis: Implications for invasive populations. Knowl. Manag. Aquat. Ecosyst. 2019;420:40. doi: 10.1051/kmae/2019031. DOI
Tarkan AS, et al. Phenotypic responses to piscivory in invasive gibel carp populations. Aquat. Sci. 2023;85:75. doi: 10.1007/s00027-023-00974-8. DOI
Kalish-Achrai N, Monsonego-Ornan E, Shahar R. Structure, composition, mechanics and growth of spines of the dorsal fin of blue tilapia Oreochromis aureus and common carp Cyprinus carpio. J. Fish Biol. 2017;90(5):2073–2096. doi: 10.1111/jfb.13287. PubMed DOI
Westrelin S, Balzani P, Haubrock PJ, Santoul F. Interannual variability in the trophic niche of young-of-year fish belonging to four piscivorous species coexisting in a natural lake. Freshw. Biol. 2023;68(3):487–501. doi: 10.1111/fwb.14041. DOI
Diehl S. Fish predation and benthic community structure: The role of omnivory and habitat complexity. Ecology. 1992;73(5):1646–1661. doi: 10.2307/1940017. DOI
Copp GH, et al. Voracious invader or benign feline? A review of the environmental biology of European catfish Silurus glanis in its native and introduced ranges. Fish Fish. 2009;10:252–282. doi: 10.1111/j.1467-2979.2008.00321.x. DOI
Sicuro B, Tarantola M, Valle E. Italian aquaculture and the diffusion of alien species: Costs and benefits. Aquac. Res. 2016;47(12):3718–3728. doi: 10.1111/are.12997. DOI
Guillerault N, et al. Does the non-native European catfish Silurus glanis threaten French river fish populations? Freshw. Biol. 2015;60(5):922–928. doi: 10.1111/fwb.12545. DOI
Haubrock PJ, Azzini M, Balzani P, Inghilesi AF, Tricarico E. When alien catfish meet—Resource overlap between the North American Ictalurus punctatus and immature European Silurus glanis in the Arno River (Italy) Ecol. Freshw. Fish. 2020;29(1):4–17. doi: 10.1111/eff.12481. DOI
UK, C. Perca fluviatilis (Linnaeus, 1758), perch.[invasive species]. Perca fluviatilis (Linnaeus, 1758), perch. [invasive species], (AQB ISC record) (2014).
Beeck, P. The early piscivory of European perch (Perca fluviatilis)—A neglected phenomenon with notable consequences for the population structure and fish community in lake ecosystems. PhD Thesis, University of Cologne, 115 (2003).
Neill S, Cullen JM. Experiments on whether schooling by their prey affects the hunting behaviour of cephalopods and fish predators. J. Zool. 1974;172(4):549–569. doi: 10.1111/j.1469-7998.1974.tb04385.x. DOI
Akçaalan R, Mazur-Marzec H, Zalewska A, Albay M. Phenotypic and toxicological characterization of toxic Nodularia spumigena from a freshwater lake in Turkey. Harmful Algae. 2009;8:273–278. doi: 10.1016/j.hal.2008.06.007. DOI
Haubrock PJ, Balzani P, Britton JR, Haase P. Using stable isotopes to analyse extinction risks and reintroduction opportunities of native species in invaded ecosystems. Sci. Rep. 2020;10(1):21576. doi: 10.1038/s41598-020-78328-9. PubMed DOI PMC
Swanson HK, et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology. 2015;96(2):318–324. doi: 10.1890/14-0235.1. PubMed DOI
Phillips DL, Gregg JW. Source partitioning using stable isotopes: Coping with too many sources. Oecologia. 2003;136:261–269. doi: 10.1007/s00442-003-1218-3. PubMed DOI
Parnell A. & Inger R. Simmr: A stable isotope mixing model. R package version 0.3. https://cran.r-project.org/web/packages/simmr/index.html (2016).
Boulêtreau S, Santoul F. The end of the mythical giant catfish. Ecosphere. 2016;7(11):1–5. doi: 10.1002/ecs2.1606. DOI
Bergström K, et al. Exceptional longevity in northern peripheral populations of Wels catfish (Silurus glanis) Sci. Rep. 2022;12(1):8070. doi: 10.1038/s41598-022-12165-w. PubMed DOI PMC
Jackson AL, Inger R, Parnell AC, Bearhop S. Comparing isotopic niche widths among and within communities: SIBER-stable isotope Bayesian ellipses in R. J. Anim. Ecol. 2011;80:595–602. doi: 10.1111/j.1365-2656.2011.01806.x. PubMed DOI