Testing the Dispersal-Origin-Status-Impact (DOSI) scheme to prioritise non-native and translocated species management
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39730848
PubMed Central
PMC11680831
DOI
10.1038/s41598-024-82284-z
PII: 10.1038/s41598-024-82284-z
Knihovny.cz E-zdroje
- Klíčová slova
- Callinectes sapidus, Gymnocephalus cernua, Myocastor coypus, Biological invasions, Invasive species, Lake Gala, Sığırcı reservoir,
- MeSH
- bezobratlí MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- jezera * MeSH
- ryby MeSH
- zachování přírodních zdrojů * metody MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Assessing actual and potential impacts of non-native species is necessary for prioritising their management. Traditional assessments often occur at the species level, potentially overlooking differences among populations. The recently developed Dispersal-Origin-Status-Impact (DOSI) assessment scheme addresses this by treating biological invasions as population-level phenomena, incorporating the complexities affecting populations of non-native species. We applied the DOSI scheme to the non-native and translocated species reported in a shallow alluvial lake (Lake Gala) and a reservoir (Sığırcı Reservoir) in north-western Türkiye. DOSI identified 12 established species across both ecosystems, including nine fish, two invertebrates, and one mammal. Most species received High and Medium-High priority rankings, in both sites. In contrast, Medium and Low priority rankings were less common, each occurring once in Lake Gala and four times in Sığırcı Reservoir. These high-priority species warrant targeted management interventions due to their established status, autonomous spread, and observed negative impacts. By enabling a more nuanced and context-specific approach, DOSI facilitates the development of targeted strategies for managing species posing the highest risks. Moreover, DOSI's focus on population-level assessment within ecosystems is highly relevant for stakeholders, decision-makers, and environmental managers, because it provides a more detailed and precise unit of evaluation.
Department of Basic Sciences Faculty of Fisheries Muğla Sıtkı Koçman University Muğla Türkiye
Department of Biology Faculty of Science Eskişehir Osmangazi University Eskişehir Türkiye
Department of Fisheries and Wildlife Sea Grant Extension Oregon State University Corvallis OR USA
Faculty of Fisheries Recep Tayyip Erdogan University Rize Türkiye
Oregon Invasive Species Council Salem USA
Oregon Sea Grant Corvallis OR USA
Vocational School of Health Services Eskişehir Osmangazi University Eskişehir Türkiye
Zobrazit více v PubMed
Essl, F. et al. Review of risk assessment systems of IAS in Europe and introducing the German-Austrian black list information system (GABLIS). J. Nat. Conserv.19, 339–350 (2011).
Haubrock, P. J. et al. Biological invasions are a population-level rather than a species-level phenomenon. Glob. Chang. Biol.30, e17312 (2024). PubMed
Spear, M. J., Walsh, J. R., Ricciardi, A. & Zanden, M. J. V. The invasion ecology of sleeper populations: prevalence, persistence, and abrupt shifts. Bioscience71, 357–369 (2021).
Strayer, D. L. et al. Boom-bust dynamics in biological invasions: towards an improved application of the concept. Ecol. Lett.20, 1337–1350 (2017). PubMed
Haubrock, P. J. et al. Invasion impacts and dynamics of a European-wide introduced species. Glob. Chang. Biol.28, 4620–4632 (2022). PubMed
Soto, I., Ahmed, D. A., Balzani, P., Cuthbert, R. N. & Haubrock, P. J. Sigmoidal curves reflect impacts and dynamics of aquatic invasive species. Sci. Total Environ.872, 161818 (2023). PubMed
Rendall, A. R. et al. Managing ecosystems in a sea of uncertainty: invasive species management and assisted colonizations. Ecol. Appl.31, e02306 (2021). PubMed
Courchamp, F. et al. Invasion biology: specific problems and possible solutions. Trends Ecol. Evol.32, 13–22 (2017). PubMed
Roberts, M., Cresswell, W. & Hanley, N. Prioritising invasive species control actions: evaluating effectiveness, costs, willingness to pay and social acceptance. Ecol. Econ.152, 1–8 (2018).
Bradshaw, C. J. A. et al. Damage costs from invasive species exceed management expenditure in nations experiencing lower economic activity. Ecol. Econ.220, 108166 (2024).
Tobin, P. C. Managing invasive species. F1000Research7, 1686. 10.12688/f1000research.15414.1 (2018). PubMed PMC
Messing, R. H. & Wright, M. G. Biological control of invasive species: solution or pollution? Front. Ecol. Environ.4, 132–140 (2006).
Kumschick, S. et al. A conceptual framework for prioritization of invasive alien species for management according to their impact. NeoBiota15, 69–100 (2012).
Gettys, L. A., Haller, W. T. & MacDonald, G. E. Herbicides in aquatic systems. Herbic. Curr. Res. Case Stud. Use (2013).
Wagner, C. D. The Short-Term Effects of Different Removal Methods of Urochloa maxima, Guinea Grass, on Acoustic Complexity (University of South Florida, 2020).
Macêdo, R. L. et al. The global social-economic dimension of biological invasions by plankton: grossly underestimated costs but a rising concern for water quality benefits? Water Res.222, 118918 (2022). PubMed
Tarkan, A. S., Marr, S. M. & Ekmekçi, F. G. Non-native and translocated freshwater fish. FiSHMED Fishes Mediterr. Environ.3, 1–28 (2015).
Papeş, M., Sällström, M., Asplund, T. R. & Vander Zanden, M. J. Invasive species research to meet the needs of resource management and planning. Conserv. Biol.25, 867–872 (2011). PubMed
Erdoğan, Ç., Sevil, S., Ronald, F. & Burak, S. Freshwater lampreys and fishes of Türkiye; an annotated checklist, 2023. Turk. J. Zool.47, 324–468 (2023).
Tarkan, A. S. et al. Economic costs of non-native species in Türkiye: a first national synthesis. J. Environ. Manag.358, 120779 (2024). PubMed
Hoddle, M. S. Restoring balance: using exotic species to control invasive exotic species. Conserv. Biol.18, 38–49 (2004).
Vilizzi, L. et al. A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions. Sci. Total Environ.788, 147868 (2021). PubMed
Hawkins, C. L. et al. Framework and guidelines for implementing the proposed IUCN environmental impact classification for alien Taxa (EICAT). Divers. Distrib.21, 1360–1363 (2015).
Tarkan, A. S. et al. Identification of potentially invasive freshwater fishes, including translocated species, in Turkey using the Aquatic Species Invasiveness Screening Kit (AS-ISK). Int. Rev. Hydrobiol.102, 47–56 (2017).
Haubrock, P. J. et al. North American channel catfish, Ictalurus punctatus: a neglected but potentially invasive freshwater fish species? Biol. Invasions23, 1563–1576 (2021).
Leung, B. et al. An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc. R. Soc. Lond. B Biol. Sci.269, 2407–2413 (2002). PubMed PMC
Brunel, S. et al. The EPPO prioritization process for invasive alien plants. EPPO Bull.40, 407–422 (2010).
McGeoch, M. A. et al. Prioritizing species, pathways, and sites to achieve conservation targets for biological invasion. Biol. Invasions18, 299–314 (2016).
Soto, I. et al. Taming the terminological tempest in invasion science. Biol. Rev.99, 1357–1390 (2024). PubMed
Finley, D., Dovciak, M. & Dean, J. A data driven method for prioritizing invasive species to aid policy and management. Biol. Invasions25, 2293–2307 (2023).
Streftaris, N. & Zenetos, A. Alien marine species in the mediterranean - the 100 ‘worst invasives’ and their Impact. Mediterr. Mar. Sci.7, 87 (2006).
Schertler, A., Rabitsch, W., Moser, D., Wessely, J. & Essl, F. The potential current distribution of the coypu (Myocastor coypus) in Europe and climate change induced shifts in the near future. NeoBiota58, 129–160 (2020).
Tarkan, A. S. et al. Are introduced gibel carp Carassius gibelio in Turkey more invasive in artificial than in natural waters? Fish Manag. Ecol.19, 178–187 (2012).
Tarkan, A. S., Gaygusuz, Ö., Gürsoy Gaygusuz, Ç., Sac, G. & Copp, G. H. Circumstantial evidence of gibel carp, Carassius gibelio, reproductive competition exerted on native fish species in a mesotrophic reservoir. Fish Manag Ecol19, 167–177 (2012).
Gozlan, R. E. et al. Pan-continental invasion of Pseudorasbora parva: towards a better understanding of freshwater fish invasions. Fish Fish.11, 315–340 (2010).
Copp, G. H., Wesley, K. J., Verreycken, H. & Russell, I. C. When an ‘invasive’ fish species fails to invade! Example of the topmouth gudgeon Pseudorasbora parva. Aquat Invasions2, 107–112 (2007).
Emiroğlu, Ö., Aksu, S., Başkurt, S., Britton, J. R. & Tarkan, A. S. Predicting how climate change and globally invasive piscivorous fishes will interact to threaten populations of endemic fishes in a freshwater biodiversity hotspot. Biol. Invasions25, 1907–1920 (2023).
Tarkan, A. S. et al. Predicting the potential implications of perch (Perca fluviatilis) introductions to a biodiversity-rich lake using stable isotope analysis. Sci. Rep.13, 17635 (2023). PubMed PMC
Parker, I. M. et al. Impact: Toward a framework for understanding the ecological effects of invaders. Biol. Invasions1, 3–19 (1999).
Tokatlı, C., Köse, E., Uğurluoğlu, A., Çiçek, A. & Emiroğlu, Ö. Use of geographic information system (GIS) to evaluate the water quality of Gala Lake (Edirne). Sigma J. Eng. Nat. Sci.32, 490–501 (2014).
Aksu, S. et al. High trophic similarity between non-native common carp and gibel carp in Turkish freshwaters: implications for management. Aquac. Fish.10.1016/j.aaf.2023.08.003 (2024).
Streftaris, N. & Zenetos, A. Alien marine species in the Mediterranean-the 100 ‘Worst Invasives’ and their impact. Mediterr. Mar. Sci.7, 87–118 (2006).
Carneiro, L. et al. Benefits do not balance costs of biological invasions. Bioscience74, 340–344 (2024).
Briski, E. et al. Relationship between propagule pressure and colonization pressure in invasion ecology: a test with ships’ ballast. Proc. R. Soc. B Biol. Sci.279, 2990–2997 (2012). PubMed PMC
Aydin, H. et al. Invasion of freshwater bodies in the Marmara region (northwestern Turkey) by nonnative gibel carp, Carassius gibelio (Bloch, 1782). Turk. J. Zool.35, 829–836 (2011).
Kurtul, I., Tarkan, A. S., Sarı, H. M. & Britton, J. R. Climatic and geographic variation as a driver of phenotypic divergence in reproductive characters and body sizes of invasive Gambusia holbrooki. Aquat. Sci.84, 29 (2022).
Kurtul, I. et al. Exploring invasiveness and versatility of used microhabitats of the globally invasive Gambusia holbrooki. Sci. Total Environ.925, 171718 (2024). PubMed
Tarkan, A. S. et al. Coupling molecular and risk analysis to investigate the origin, distribution and potential impact of non-native species: an application to ruffe Gymnocephalus cernua in Turkey. Eur. Zool. J.89, 109–121 (2022).
Toutain, M. et al. Assessing the role of non-native species and artificial water bodies on the trophic and functional niche of Mediterranean freshwater fish communities. Sci. Total Environ.938, 173520 (2024). PubMed
Pamukoğlu, N. Türkiye’de yayiliş gösteren su maymunu (Myocastor coypus) habitatlari üzerine ekolojik gözlemler. Doğanın Sesi6, 35–47 (2023).
Aydın, G. B., Çapraz, A. & Çamur-Elipek, B. The possible effects of global climate change on zebra mussel colonies (Dreissena polymorpha) in some dam lakes of Turkish Thrace. Climate Changes and Natural Resources Turkey Perspectives21, 21–38 (2021).