• This record comes from PubMed

Invasion impacts and dynamics of a European-wide introduced species

. 2022 Aug ; 28 (15) : 4620-4632. [epub] 20220515

Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Globalization has led to the introduction of thousands of alien species worldwide. With growing impacts by invasive species, understanding the invasion process remains critical for predicting adverse effects and informing efficient management. Theoretically, invasion dynamics have been assumed to follow an "invasion curve" (S-shaped curve of available area invaded over time), but this dynamic has lacked empirical testing using large-scale data and neglects to consider invader abundances. We propose an "impact curve" describing the impacts generated by invasive species over time based on cumulative abundances. To test this curve's large-scale applicability, we used the data-rich New Zealand mud snail Potamopyrgus antipodarum, one of the most damaging freshwater invaders that has invaded almost all of Europe. Using long-term (1979-2020) abundance and environmental data collected across 306 European sites, we observed that P. antipodarum abundance generally increased through time, with slower population growth at higher latitudes and with lower runoff depth. Fifty-nine percent of these populations followed the impact curve, characterized by first occurrence, exponential growth, then long-term saturation. This behaviour is consistent with boom-bust dynamics, as saturation occurs due to a rapid decline in abundance over time. Across sites, we estimated that impact peaked approximately two decades after first detection, but the rate of progression along the invasion process was influenced by local abiotic conditions. The S-shaped impact curve may be common among many invasive species that undergo complex invasion dynamics. This provides a potentially unifying approach to advance understanding of large-scale invasion dynamics and could inform timely management actions to mitigate impacts on ecosystems and economies.

Carnegie Mellon University Institute for Green Science Pittsburgh Pennsylvania USA

Center for Applied Mathematics and Bioinformatics Department of Mathematics and Natural Sciences Gulf University for Science and Technology Hawally Kuwait

Christian Albrechts University Kiel Institute for Natural Resource Conservation Department of Hydrology and Water Resources Management Kiel Germany

Department of Animal Sciences and Aquatic Ecology Ghent University Ghent Belgium

Department of Aquatic Sciences and Assessment Swedish University of Agricultural Sciences Uppsala Sweden

Department of Biology Carleton University Ottawa Canada

Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic

Department of Ecoscience Lake Ecology Aarhus University Aarhus Denmark

Department of Hydrobiology University of Pécs Pécs Hungary

Department of Plant Biology and Ecology Faculty of Science and Technology University of the Basque Country Leioa Spain

Department of Tisza Research Institute of Aquatic Ecology Centre for Ecological Research Debrecen Hungary

EDF R and D Laboratoire National d'Hydraulique et Environnement Chatou France

Environment Agency Wallingford UK

Environmental Research and Innovation Belvaux Luxembourg

Finnish Environment Institute Freshwater Centre Oulu Finland

Flanders Environment Agency Aalst Belgium

Freshwater Ecology Hydrology and Management Departament de Biologia Evolutiva Ecologia i Ciències Ambientals Facultat de Biologia Institut de Recerca de l'Aigua Barcelona Spain

Freshwater Ecology Hydrology and Management Departament de Biologia Evolutiva Ecologia i Ciències Ambientals Facultat de Biologia Institut de Recerca de la Biodiversitat Barcelona Spain

Geography Department Faculty of Mathematics and Natural Sciences Humboldt Universität zu Berlin Berlin Germany

GEOMAR Helmholtz Zentrum für Ozeanforschung Kiel Kiel Germany

INRAE UR RiverLy centre de Lyon Villeurbanne Villeurbanne France

Institute of Technology Centre for Freshwater and Environmental Studies Dundalk Ireland

Leibniz Institute of Freshwater Ecology and Inland Fisheries Department Community and Ecosystem Ecology Berlin Germany

MARE Marine and Environmental Sciences Centre Department of Life Sciences University of Coimbra Coimbra Portugal

Marine Institute Newport Ireland

RECOVER Research Unit National Research Institute for Agriculture Food and Environment Aix en Provence France

School of Biological Sciences Queen's University Belfast Belfast UK

School of Natural Resources University of Nebraska Lincoln Lincoln Nebraska USA

School of Science and Technology Nottingham Trent University Nottingham UK

Section for Nature Based Solutions Norwegian Institute for Water Research Oslo Norway

Senckenberg Research Institute and Natural History Museum Frankfurt Department of River Ecology and Conservation Gelnhausen Germany

University of Duisburg Essen Faculty of Biology Essen Germany

University of Koblenz Landau Institute for Environmental Sciences Landau Germany

University of Natural Resources and Life Sciences Institute of Hydrobiology and Aquatic Ecosystem Management Vienna Austria

University of South Bohemia in České Budějovice Faculty of Fisheries and Protection of Waters South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses Vodňany Czech Republic

Yale University School of the Environment New Haven Connecticut USA

See more in PubMed

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 170191.

Ahmed, D. A., Hudgins, E. J., Cuthbert, R. N., Haubrock, P. J., Renault, D., Bonnaud, E., Diagne, C., & Courchamp, F. (2021). Modelling the damage costs of invasive alien species. Biological Invasions. https://doi.org/10.1007/s10530-021-02586-5

Ahmed, D. A., Hudgins, E. J., Cuthbert, R. N., Kourantidou, M., Diagne, C., Haubrock, P. J., Leung, B., Liu, C., Leroy, B., Petrovskii, S., & Courchamp, F. (2022). Managing biological invasions: The cost of inaction. Biological Invasions. https://doi.org/10.1007/s10530-022-02755-0

Alonso, A., & Castro-Díez, P. (2008). What explains the invading success of the aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca)? Hydrobiologia, 614, 107-116.

Alonso, Á., & Castro-Díez, P. (2012). The exotic aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca): State of the art of a worldwide invasion. Aquatic Sciences, 74, 375-383.

Arim, M., Abades, S. R., Neill, P. E., Lima, M., & Marquet, P. A. (2006). Spread dynamics of invasive species. Proceedings of the National Academy of Sciences of the United States of America, 103, 374-378.

Berlin, J. A., & Antman, E. M. (1994). Advantages and limitations of metaanalytic regressions of clinical trials data. The Online Journal of Current Clinical Trials, 8425.

Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., Wilson, J. R. U., & Richardson, D. M. (2011). A proposed unified framework for biological invasions. Trends in Ecology & Evolution, 26, 333-339.

Bradley, B. A., Laginhas, B. B., Whitlock, R., Allen, J. M., Bates, A. E., Bernatchez, G., Diez, J. M., Early, R., Lenoir, J., Vilà, M., & Sorte, C. J. (2019). Disentangling the abundance-impact relationship for invasive species. Proceedings of the National Academy of Sciences of the United States of America, 116, 9919-9924.

Bruce, R. L., Moffitt, C. M., & Dennis, B. (2009). Survival and passage of ingested New Zealand mudsnails through the intestinal tract of rainbow trout. North American Journal of Aquaculture, 71, 287-301.

CABI. (2021). Invasive species compendium. CAB International. www.cabi.org/isc

Calcagno, V., & de Mazancourt, C. (2010). Glmulti: An R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software, 34, 29.

Cejka, T., Dvorak, L., & Kosel, V. (2008). Present distribution of Potamopyrgus antipodarum (Gray, 1843) (Mollusca: Gastropoda) in the Slovak Republic. Malacologica Bohemoslovaca, 7, 21-25.

Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., & Jones, P. D. (2018). An ensemble version of the E-OBS temperature and precipitation data sets. Journal of Geophysical Research-Atmospheres, 123, 9391-9409.

Coughlan, N. E., Kelly, T. C., Davenport, J., & Jansen, M. A. (2017). Up, up and away: Bird-mediated ectozoochorous dispersal between aquatic environments. Freshwater Biology, 62, 631-648.

Courchamp, F., Berec, L., & Gascoigne, J. (2008). Allee effects in ecology and conservation. Oxford University Press.

Courchamp, F., Fournier, A., Bellard, C., Bertelsmeier, C., Bonnaud, E., Jeschke, J. M., & Russell, J. C. (2017). Invasion biology: Specific problems and possible solutions. Trends in Ecology & Evolution, 32(1), 13-22.

Cuthbert, R. N., Diagne, C., Hudgins, E. J., Turbelin, A., Ahmed, D. A., Albert, C., Bodey, T. W., Briski, E., Essl, F., Haubrock, P. J., Gozlan, R. E., Kirichenko, N., Kourantidou, M., Kramer, A. M., & Courchamp, F. (2022). Biological invasion costs reveal insufficient proactive management worldwide. Science of the Total Environment, 819, 153404.

Cuthbert, R. N., Pattison, Z., Taylor, N. G., Verbrugge, L., Diagne, C., Ahmed, D. A., Leroy, B., Angulo, E., Briski, E., Capinha, C., Catford, J. A., Dalu, T., Essl, F., Gozlan, R. E., Haubrock, P. J., Kourantidou, M., Kramer, A. M., Renault, D., Wasserman, R. J., & Courchamp, F. (2021). Global economic costs of aquatic invasive alien species. Science of the Total Environment, 775, 145238.

Da Silva, A. M. V., Nunes Souza, J. V., De Souza, J. R. B., & Vieira, L. M. (2019). Modelling species distributions to predict areas at risk of invasion by the exotic aquatic New Zealand mudsnail Potamopyrgus antipodarum (Gray 1843). Freshwater Biology, 64, 1504-1518.

Department of Primary Industries. (2015). Victoria. Invasive plants and animals policy framework. Biosecurity Strategy for Victoria.

Diagne, C., Leroy, B., Vaissière, A.-C., Gozlan, R. E., Roiz, D., Jarić, I., Salles, J.-M., Bradshaw, C. J. A., & Courchamp, F. (2021). High and rising economic costs of biological invasions worldwide. Nature, 592, 571-576.

Doebeli, M., Jaque, E. C., & Ispolatov, Y. (2021). Boom-bust population dynamics increase diversity in evolving competitive communities. Communications Biology, 4, 2-9.

Dornelas, M., Antao, L. H., Moyes, F., Bates, A. E., Magurran, A. E., Adam, D., Akhmetzhanova, A. A., Appeltans, W., Arcos, J. M., Arnold, H., & Ayyappan, N. (2018). BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 27(7), 760-786.

Dybdahl, M. F., & Kane, S. L. (2005). Adaptation vs. phenotypic plasticity in the success of a clonal invader. Ecology, 86, 1592-1601.

Elton, C. S. (1958). The ecology of invasions by animals and plants. Chapman & Hall.

ESA. (2017). Land cover CCI product user guide version 2. Technical Report.

Evans, M. A. (2012). Impacts of the invasive New Zealand mudsnail (Potamopyrgus antipodarum) as leaf litter decomposers. University of California, Davis.

Fischer, E. M., & Schär, C. (2010). Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geoscience, 3, 398-403.

Geburzi, J. C., & McCarthy, M. L. (2018). How do they do it? - Understanding the success of marine invasive species. In S. Jungblut, V. Liebich, & M. Bode (Eds.), YOUMARES 8 - Oceans across boundaries: Learning from each other (pp. 109-124). Springer.

Gérard, C., Hervé, M., & Hechinger, R. F. (2018). Long-term population fluctuations of the exotic New Zealand mudsnail Potamopyrgus antipodarum and its introduced aporocotylid trematode in northwestern France. Hydrobiologia, 817, 253-266.

Greenwood, D. J., Hall, R. O., Tibbets, T. M., & Krist, A. C. (2020). A precipitous decline in an invasive snail population cannot be explained by a native predator. Biological Invasions, 22, 363-378.

Haas, T. C., Blum, M. J., & Heins, D. C. (2010). Morphological responses of a stream fish to water impoundment. Biology Letters, 6, 803-806.

Hall, R. O., Jr., Dybdahl, M. F., & VanderLoop, M. C. (2006). Extremely high secondary production of introduced snails in rivers. Ecological Applications, 16, 1121-1131.

Hamed, K. H., & Rao, R. A. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204, 182-196.

Hansen, G. J., Vander Zanden, M. J., Blum, M. J., Clayton, M. K., Hain, E. F., Hauxwell, J., Izzo, M., Kornis, M. S., McIntyre, P. B., Mikulyuk, A., Nilsson, E., Olden, D., Papes, M., & Sharma, S. (2013). Commonly rare and rarely common: Comparing population abundance of invasive and native aquatic species. PLoS One, 8(10), e77415.

Hastings, A., Cuddington, K., Davies, K. F., Dugaw, C. J., Elmendorf, S., Freestone, A., Harrison, A., Holland, M., Lambrinos, J., Malvadkar, U., Melbourne, B. A., Moore, K., Taylow, C., & Thomson, D. (2005). The spatial spread of invasions: New developments in theory and evidence. Ecology Letters, 8(1), 91-101.

Haubrock, P. J., Pilotto, F., Innocenti, G., Cianfanelli, S., & Haase, P. (2021). Two centuries for an almost complete community turnover from native to non-native species in a riverine ecosystem. Global Change Biology, 27, 606-623.

Hui, C., & Richardson, D. M. (2017). Invasion dynamics. Oxford University Press.

Jensen, K. R. (2010). NOBANIS-Invasive alien species fact sheet-Potamopyrgus antipodarum. In Identification key to marine invasive species in Nordic waters-NOBANIS. www.nobanis.org

Jowett, I. G., & Duncan, M. J. (1990). Flow variability in New Zealand rivers and its relationship to in-stream habitat and biota. New Zealand Journal of Marine and Freshwater Research, 24, 305-317.

Kelly, C. L., Schwarzkopf, L., Gordon, I. J., & Hirsch, B. (2021). Population growth lags in introduced species. Ecology and Evolution, 11, 4577-4587.

Kendall, D. G. (1949). Stochastic processes and population growth. Journal of the Royal Statistical Society, Series B, 11, 230-282.

Kistner, E. J., & Dybdahl, M. F. (2013). Adaptive responses and invasion: The role of plasticity and evolution in snail shell morphology. Ecology and Evolution, 3, 424-436.

Kramer, A. M., Dennis, B., Liebhold, A. M., & Drake, J. M. (2009). The evidence for Allee effects. Population Ecology, 51, 341-354.

Leung, B., Lodge, D. M., Finnoff, D., Shogren, J. F., Lewis, M. A., & Lamberti, G. (2002). An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1508), 2407-2413.

Leung, B., Roura-Pascual, N., Bacher, S., Heikkilä, J., Brotons, L., Burgman, M. A., Dehnen-Schmutz, K., Essl, F., Hulme, P. E., Richardson, D. M., Sol, D., & Vilá, M. (2012). TEASIng apart alien species risk assessments: A framework for best practices. Ecology Letters, 15(12), 1475-1493.

Liebhold, A. M., Brockerhoff, E. G., & Kimberley, M. (2017). Depletion of heterogeneous source species pools predicts future invasion rates. Journal of Applied Ecology, 54, 1968-1977.

Lodge, D. M., Williams, S., MacIsaac, H. J., Hayes, K. R., Leung, B., Reichard, S., Richard, N. M., Moyle, P. B., Smith, M., Andow, D. A., Carlton, J. T., & McMichael, A. (2006). Biological invasions: Recommendations for US policy and management. Ecological Applications, 16(6), 2035-2054.

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: The Econometric Society, 13, 245-259.

Moffitt, C. M., & James, C. A. (2012). Response of New Zealand mudsnails Potamopyrgus antipodarum to freezing and near-freezing fluctuating water temperatures. Freshwater Science, 31, 1035-1041.

Moore, J. W., Herbst, D. B., Heady, W. N., & Carlson, S. M. (2012). Stream community and ecosystem responses to the boom and bust of an invading snail. Biological Invasions, 14, 2435-2446.

Morris, C., Morris, L. R., Leffler, A. J., Collins, C. H., Forman, A. D., Weltz, M. A., & Kitchen, S. G. (2013). Using long-term datasets to study exotic plant invasions on rangelands in the western United States. Journal of Arid Environments, 95, 65-74.

Mouthon, J., & Daufresne, M. (2015). Resilience of mollusc communities of the river Saone (eastern France) and its two main tributaries after the 2003 heatwave. Freshwater Biology, 60, 2571-2583.

Múrria, C., Bonada, N., & Prat, N. (2008). Effects of the invasive species Potamopyrgus antipodarum (Hydrobiidae, Mollusca) on community structure in a small Mediterranean stream. Fundamental and Applied Limnology, 171, 131-143.

Nentwig, W., Bacher, S., Kumschick, S., Pyšek, P., & Vilà, M. (2018). More than “100 worst” alien species in Europe. Biological Invasions, 20, 1611-1621.

Neteler, M., Bowman, M. H., Landa, M., & Metz, M. (2012). GRASS GIS: A multi-purpose open source GIS. Environmental Modelling & Software, 31, 124-130.

Oliver, D., Loubere, A., & Sorensen, J. (2021). Efficacy of low-dose EarthTec® QZ treatment for the control of New Zealand mud snails Potamopyrgus antipodarum in a hatchery environment. Management of Biological Invasions, 12, 85-95.

Pilotto, F., Kühn, I., Adrian, R., Alber, R., Alignier, A., Andrews, C., Bäck, J., Barbaro, L., Beaumont, D., Beenaerts, N., Benham, S., Boukal, D. S., Bretagnolle, V., Camatti, E., Canullo, R., Cardoso, P. G., Ens, B. J., Everaert, G., Evtimova, V., … Haase, P. (2020). Meta-analysis of multidecadal biodiversity trends in Europe. Nature Communications, 11(1), 1-11.

Ponder, W. F. (1988). Potamopyrgus antipodarum-a molluscan coloniser of Europe and Australia. Journal of Molluscan Studies, 54, 271-285.

Preston, D. L., Crone, E. R., Millerter Kuile, A., Lewis, C. D., Sauer, E. L., & Trovillion, D. C. (2022). Non-native freshwater snails: A global synthesis of invasion status, mechanisms of introduction, and interactions with natural enemies. Freshwater Biology, 67, 227-239.

Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., Dawson, W., Essl, F., Foxcraft, L. C., Genovesi, P., Jeschke, J. M., Kühn, I., Liebhold, A. M., Mandrak, N. E., Meyerson, L. A., Pauchard, A., Pergl, J., Roy, H. E., Seebens, H., … Richardson, D. M. (2020). Scientists' warning on invasive alien species. Biological Reviews, 95(6), 1511-1534.

Reyns, N., Casaer, J., De Smet, L., Devos, K., Huysentruyt, F., Robertson, P. A., Verbeke, T., & Adriaens, T. (2018). Cost-benefit analysis for invasive species control: The case of greater Canada goose Branta canadensis in Flanders (northern Belgium). PeerJ, 6, e4283.

Ricciardi, A., Iacarella, J. C., Aldridge, D. C., Blackburn, T. M., Carlton, J. T., Catford, J. A., Dick, J. T. A., Hulme, P. E., Jeschke, J. M., Liebhold, A. M., Lockwood, J. L., MacIsaac, H. J., Meyerson, L. A., Pyšek, P., Richardson, D. M., Ruiz, G. M., Simberloff, D., Vilà, M., & Wardle, D. A. (2021). Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 29, 119-141.

Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., Pagad, S., Pyšek, P., Winter, M., Arianoutsou, M., Bacher, S., Blasius, B., Brundu, G., Capinha, C., Celesti-Grapow, L., Dawson, W., Dullinger, S., Fuentes, N., Jäger, H., … Essl, F. (2017). No saturation in the accumulation of alien species worldwide. Nature Communications, 8(1), 1-9.

Seebens, H., Clarke, D. A., Groom, Q., Wilson, J. R., García-Berthou, E., Kühn, I., Roigé, M., Essl, F., Pagad, S., Vicente, J., Winter, M., & McGeoch, M. (2020). A workflow for standardising and integrating alien species distribution data. NeoBiota, 59, 39-59.

Seebens, H., Bacher, S., Blackburn, T. M., Capinha, C., Dawson, W., Dullinger, S., Genovesi, P., Hulme, P. E., Kleunen, M., Kühn, I., Jeschke, J. M., Lenzner, B., Liebhold, A. M., Pattison, Z., Pergl, J., Pyšek, P., Winter, M., & Essl, F. (2021). Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 27(5), 970-982.

Sepulveda, A. J., & Marczak, L. B. (2012). Active dispersal of an aquatic invader determined by resource and flow conditions. Biological Invasions, 14, 1201-1209.

Sofaer, H. R., Jarnevich, C. S., & Pearse, I. S. (2018). The relationship between invader abundance and impact. Ecosphere, 9, e02415.

Sousa, W. P. (1984). The role of disturbance in natural communities. Annual Review of Ecology and Systematics, 15, 353-391.

Spear, M. J., Walsh, J. R., Ricciardi, A., & Zanden, M. J. V. (2021). The invasion ecology of sleeper populations: Prevalence, persistence, and abrupt shifts. Bioscience, 71, 357-369.

Statzner, B., Bonada, N., & Dolédec, S. (2008). Biological attributes discriminating invasive from native European stream macroinvertebrates. Biological Invasions, 10, 517-530.

Strayer, D. L. (2009). Twenty years of zebra mussels: Lessons from the mollusc that made headlines. Frontiers in Ecology and the Environment, 7, 135-141.

Strayer, D. L. (2020). Non-native species have multiple abundance-impact curves. Ecology and Evolution, 10, 6833-6843.

Strayer, D. L., D'Antonio, C. M., Essl, F., Fowler, M. S., Geist, J., Hilt, S., Jaric, I., Jöhnk, K., Jones, C. G., Lambin, X., Latzka, A. W., Pergl, J., Pysek, P., Robertson, P., van Schmalensee, M., Stefansson, R. A., Wright, J., & Jeschke, J. M. (2017). Boom-bust dynamics in biological invasions: Towards an improved application of the concept. Ecology Letters, 20(10), 1337-1350.

Taylor, C. M., & Hastings, A. (2005). Allee effects in biological invasions. Ecology Letters, 8, 895-908.

Thomas, A. C., Tank, S., Nguyen, P. L., Ponce, J., Sinnesael, M., & Goldberg, C. S. (2020). A system for rapid eDNA detection of aquatic invasive species. Environmental DNA, 2(3), 261-270.

Vareille-Morel, C. (1985). Resistance of the prosobranch Potamopyrgus jenkinsi (EA Smith, 1889) to decreasing temperatures: An experimental study. Annales De Limnologie, 21, 221-226.

Venables, W. N., & Ripley, B. D. (2002). Random and mixed effects. In Modern applied statistics with S (pp. 271-300). Springer.

Viechtbauer, W., & Viechtbauer, M. W. (2015). Package ‘metafor’. The Comprehensive R Archive Network. http://cran.r-project.org/web/packages/etanaly/etanaly.pdf

Westfall, K. M., Therriault, T. W., & Abbott, C. L. (2020). A new approach to molecular biosurveillance of invasive species using DNA metabarcoding. Global Change Biology, 26, 1012-1022.

Winterbourn, M. J. (1969). Water temperature as a factor limiting the distribution of Potamopyrgus antipodum (Gastropoda-Prosobranchia) in the New Zealand thermal region. New Zealand Journal of Marine and Freshwater Research, 3, 453-458.

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., & Pavelsky, T. M. (2019). MERIT hydro: A high-resolution global hydrography map based on latest topography dataset. Water Resources Research, 55(6), 5053-5073.

Yokomizo, H., Possingham, H. P., Thomas, M. B., & Buckley, Y. M. (2009). Managing the impact of invasive species: The value of knowing the density-impact curve. Ecological Applications, 19, 376-386.

Yu, H., Yue, M., Wang, C., Le Roux, J. J., Peng, C., & Li, W. (2020). Priority effects and competition by a native species inhibit an invasive species and may assist restoration. Ecology and Evolution, 10(23), 13355-13369.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...