Biological invasions are a population-level rather than a species-level phenomenon

. 2024 May ; 30 (5) : e17312.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38736133

Grantová podpora
ANR-20-EBI5-0004 Biodiversa+
FWES-2021-0011 Sukachev Institute of Forest SB RAS
PID2019-103936GB-C21 European Union NextGeneration EU: NextGenerationEU/PRTR)
TED2021-129889B-I00 European Union NextGeneration EU: NextGenerationEU/PRTR)
RED2022-134338 European Union NextGeneration EU: NextGenerationEU/PRTR)
MCIN/AEI/10.13039/501100011033) Ministerio de Ciencia, Innovación y Universidades
PID2019-103936GB-C21 Ministerio de Ciencia, Innovación y Universidades
TED2021-129889B-I00 Ministerio de Ciencia, Innovación y Universidades
RED2022-134338 Ministerio de Ciencia, Innovación y Universidades
ECF-2021-001 Leverhulme Trust
22-16-00075 Russian Science Foundation
CN00000033 Italian Ministry of University and Research
899546 Marie Skłodowska-Curie

Biological invasions pose a rapidly expanding threat to the persistence, functioning and service provisioning of ecosystems globally, and to socio-economic interests. The stages of successful invasions are driven by the same mechanism that underlies adaptive changes across species in general-via natural selection on intraspecific variation in traits that influence survival and reproductive performance (i.e., fitness). Surprisingly, however, the rapid progress in the field of invasion science has resulted in a predominance of species-level approaches (such as deny lists), often irrespective of natural selection theory, local adaptation and other population-level processes that govern successful invasions. To address these issues, we analyse non-native species dynamics at the population level by employing a database of European freshwater macroinvertebrate time series, to investigate spreading speed, abundance dynamics and impact assessments among populations. Our findings reveal substantial variability in spreading speed and abundance trends within and between macroinvertebrate species across biogeographic regions, indicating that levels of invasiveness and impact differ markedly. Discrepancies and inconsistencies among species-level risk screenings and real population-level data were also identified, highlighting the inherent challenges in accurately assessing population-level effects through species-level assessments. In recognition of the importance of population-level assessments, we urge a shift in invasive species management frameworks, which should account for the dynamics of different populations and their environmental context. Adopting an adaptive, region-specific and population-focused approach is imperative, considering the diverse ecological contexts and varying degrees of susceptibility. Such an approach could improve and refine risk assessments while promoting mechanistic understandings of risks and impacts, thereby enabling the development of more effective conservation and management strategies.

All Russian Plant Quarantine Center Krasnoyarsk Branch Krasnoyarsk Russia

Biodiversity Research Institute IMIB Mieres Spain

CAMB Center for Applied Mathematics and Bioinformatics Gulf University for Science and Technology Hawally Kuwait

Department of Basic Sciences Faculty of Fisheries Muğla Sıtkı Koçman University Muğla Turkey

Department of Biology and Biochemistry University of Houston Houston Texas USA

Department of Biology Faculty of Arts and Sciences Eskişehir Osmangazi University Eskişehir Turkey

Department of Biology Faculty of Science Hacettepe University Ankara Turkey

Department of Biology Faculty of Sciences Muğla Sıtkı Koçman University Mugla Turkey

Department of Ecology and Vertebrate Zoology Faculty of Biology and Environmental Protection University of Lodz Lodz Poland

Department of Life and Environmental Sciences Bournemouth University Poole UK

Department of Life Sciences and Systems Biology University of Turin Torino Italy

Department of River Ecology and Conservation Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany

European and Mediterranean Plant Protection Organization Paris France

Faculty of Fisheries and Protection of Waters South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses University of South Bohemia in České Budějovice Vodňany Czech Republic

Faculty of Fisheries Marine and Inland Waters Sciences and Technology Department Ege University İzmir Turkey

Faculty of Fisheries Recep Tayyip Erdogan University Rize Turkey

Finnish Museum of Natural History University of Helsinki Helsinki Finland

GEOMAR Helmholtz Zentrum für Ozeanforschung Kiel Kiel Germany

Graduate Program in Ecology and Natural Resources Department of Ecology and Evolutionary Biology Federal University of São Carlos UFSCar São Carlos Brazil

GRECO Institute of Aquatic Ecology University of Girona Girona Spain

Grupo de Ecología de Invasiones INIBIOMA CONICET Universidad Nacional del Comahue San Carlos de Bariloche Argentina

Institute of Biology Freie Universität Berlin Berlin Germany

Institute of Botany; Department of Invasion Ecology Academy of Sciences of the Czech Republic Průhonice Czech Republic

Instituto de Ecología Regional Universidad Nacional de Tucumán CONICET Yerba Buena Argentina

Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany

NBFC National Biodiversity Future Center Palermo Italy

School of Agriculture Food and Ecosystem Sciences The University of Melbourne Parkville Victoria Australia

School of Biological Sciences Institute for Global Food Security Queen's University Belfast Belfast UK

School of Biological Sciences Queen's University Belfast Belfast UK

School of Geography and Environmental Sciences University of Southampton Southampton UK

Siberian Federal University Krasnoyarsk Russia

Southern Indian Ocean Fisheries Agreement Le Port La Reunion France

Sukachev Institute of Forest Siberian Branch of Russian Academy of Sciences Federal Research Center «Krasnoyarsk Science Center SB RAS» Krasnoyarsk Russia

Université de Bretagne Occidentale AMURE Plouzané France

Université de Rennes CNRS ECOBIO [ ] UMR 11 6553 Rennes France

Vocational School of Health Services Eskişehir Osmangazi University Eskişehir Turkey

Water Research Institute National Research Council Verbania Pallanza Italy

Zobrazit více v PubMed

Aksu, S., Başkurt, S., Emiroğlu, Ö., & Tarkan, A. S. (2021). Establishment and range expansion of non‐native fish species are facilitated by hot springs: The case of upper Sakarya Basin (NW, Turkey). Oceanological and Hydrobiological Studies, 50, 247–258. https://doi.org/10.1016/j.jcz.2019.10.002

Almond, R. E. A., Grooten, M., & Petersen, T. (Eds.). (2020). Living planet report 2020—Bending the curve of biodiversity loss. WWF.

Altwegg, R., Collingham, Y. C., Erni, B., & Huntley, B. (2013). Density‐dependent dispersal and the speed of range expansions. Diversity and Distributions, 19(1), 60–68. https://doi.org/10.1111/j.1472‐4642.2012.00943.x

Bacher, S., Galil, B. S., Nuñez, M. A., Ansong, M., Cassey, P., Dehnen‐Schmutz, K., Fayvush, G., Hiremath, A. J., Ikegami, M., Martinou, A. F., McDermott, S. M., Preda, C., Vilà, M., Weyl, O. L. F., Fernandez, R. D., & Ryan‐Colton, E. (2023). Chapter 4: Impacts of biological invasions on nature, nature's contributions to people, and good quality of life. In H. E. Roy, A. Pauchard, P. Stoett, & T. Renard Truong (Eds.), Thematic assessment report on invasive alien species and their control of the intergovernmental science‐policy platform on biodiversity and ecosystem services. IPBES Secretariat. https://doi.org/10.5281/zenodo.7430731

Beck, J., Böller, M., Erhardt, A., & Schwanghart, W. (2014). Spatial bias in the GBIF database and its effect on modeling species' geographic distributions. Ecological Informatics, 19, 10–15. https://doi.org/10.1016/j.ecoinf.2013.11.002

Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., Wilson, J. R., & Richardson, D. M. (2011). A proposed unified framework for biological invasions. Trends in Ecology & Evolution, 26(7), 333–339. https://doi.org/10.1016/j.tree.2011.03.023

Bolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., Rudolf, V. H. W., Schreiber, S. J., Urban, M. C., & Vasseur, D. A. (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26(4), 183–192. https://doi.org/10.1016/j.tree.2011.01.009

Bolnick, D. I., & Doebeli, M. (2003). Sexual dimorphism and adaptive speciation: Two sides of the same ecological coin. Evolution, 57(11), 2433–2449. https://doi.org/10.1111/j.0014‐3820.2003.tb01489.x

Bolnick, D. I., Svanbäck, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D., & Forister, M. L. (2003). The ecology of individuals: Incidence and implications of individual specialization. The American Naturalist, 161(1), 1–28. https://doi.org/10.1086/343878

Booy, O., Robertson, P. A., Moore, N., Ward, J., Roy, H. E., Adriaens, T., Shaw, R., van Valkenburg, J., Wyn, G., Bertolino, S., Blight, O., Branquart, E., Brundu, G., Caffrey, J., Capizzi, D., Casaer, J., de Clerck, O., Coughlan, N. E., Davis, E., … Mill, A. C. (2020). Using structured eradication feasibility assessment to prioritize the management of new and emerging invasive alien species in Europe. Global Change Biology, 26(11), 6235–6250. https://doi.org/10.1111/gcb.15280

Borden, J. B., & Flory, S. L. (2021). Urban evolution of invasive species. Frontiers in Ecology and the Environment, 19(3), 184–191. https://doi.org/10.1002/fee.2295

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2021). Introduction to meta‐analysis. John Wiley & Sons Ltd.

Borenstein, M., Higgins, J. P., Hedges, L. V., & Rothstein, H. R. (2017). Basics of meta‐analysis: I2 is not an absolute measure of heterogeneity. Research Synthesis Methods, 8(1), 5–18. https://doi.org/10.1002/jrsm.1230

Bradley, B. A., Laginhas, B. B., Whitlock, R., Allen, J. M., Bates, A. E., Bernatchez, G., Diez, J. M., Early, R., Lenoir, J., Vilà, M., & Sorte, C. J. (2019). Disentangling the abundance–impact relationship for invasive species. Proceedings of the National Academy of Sciences of the United States of America, 116(20), 9919–9924. https://doi.org/10.1073/pnas.1818081116

Briski, E., Bailey, S. A., Casas‐Monroy, O., DiBacco, C., Kaczmarska, I., Levings, C., MacGillivary, M. L., McKindsey, C. W., Nasmith, L. E., Parenteau, M., Piercey, G. E., Rochon, A., Roy, S., Simard, N., Villac, M. C., Weise, A. M., & MacIsaac, H. J. (2012). Relationship between propagule pressure and colonization pressure in invasion ecology: A test with ships' ballast. Proceedings of the Royal Society B: Biological Sciences, 279(1740), 2990–2997. https://doi.org/10.1098/rspb.2011.2671

Briski, E., Chan, F., MacIsaac, H. J., & Bailey, S. A. (2014). A conceptual model of community dynamics during the transport stage of the invasion process: A case study of ships' ballast. Diversity and Distributions, 20, 236–244. https://doi.org/10.1111/ddi.12154

Briski, E., Chan, F. T., Darling, J. A., Lauringson, V., MacIsaac, H. J., Zhan, A., & Bailey, S. A. (2018). Beyond propagule pressure: Importance of selection during the transport stage of biological invasions. Frontiers in Ecology and the Environment, 16(6), 345–353. https://doi.org/10.1002/fee.1820

Briski, E., Drake, D. A. R., Chan, F. T., Bailey, S. A., & MacIsaac, H. J. (2014). Variation in propagule and colonization pressures following rapid human‐mediated transport: Implications for a universal assemblage‐based management model. Limnology and Oceanography, 59(6), 2068–2076. https://doi.org/10.4319/lo.2014.59.6.2068

Byers, J. E., & Noonburg, E. G. (2003). Scale dependent effects of biotic resistance to biological invasion. Ecology, 84(6), 1428–1433.

Capellini, I., Baker, J., Allen, W. L., Street, S. E., & Venditti, C. (2015). The role of life history traits in mammalian invasion success. Ecology Letters, 18(10), 1099–1107. https://doi.org/10.1111/ele.12493

Catford, J. A., Jansson, R., & Nilsson, C. (2009). Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions, 15, 22–40. https://doi.org/10.1111/j.1472‐4642.2008.00521.x

Catford, J. A., Smith, A. L., Wragg, P. D., Clark, A. T., Kosmala, M., Cavender‐Bares, J., Reich, P. B., & Tilman, D. (2019). Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a long‐term grassland experiment. Ecology Letters, 22, 593–604. https://doi.org/10.1111/ele.13220

Chamberlain, S., Oldoni, D., & Waller, J. (2022). rgbif: Interface to the Global Biodiversity Information Facility API. R package Version 3.7.9. https://CRAN.R‐project.org/package=rgbif

Clobert, J., Le Galliard, J.‐F., Cote, J., Meylan, S., & Massot, M. (2009). Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecology Letters, 12(3), 197–209. https://doi.org/10.1111/j.1461‐0248.2008.01267.x

Colautti, R. I., & MacIsaac, H. J. (2004). A neutral terminology to define ‘invasive’ species. Diversity and Distributions, 10(2), 135–141. https://doi.org/10.1111/j.1366‐9516.2004.00061.x

Copp, G. H., Vilizzi, L., Tidbury, H., Stebbing, P. D., Tarkan, A. S., Miossec, L., & Goulletquer, P. (2016). Development of a generic decision‐support tool for identifying potentially invasive aquatic taxa: AS‐ISK. Management of Biological Invasions, 7(4), 343–350. https://doi.org/10.3391/mbi.2016.7.4.04

Crooks, J. A. (2005). Lag times and exotic species: The ecology and management of biological invasions in slow‐motion. Écoscience, 12(3), 316–329. https://doi.org/10.2980/i1195‐6860‐12‐3‐316.1

Crystal‐Ornelas, R., & Lockwood, J. L. (2020). The ‘known unknowns’ of invasive species impact measurement. Biological Invasions, 22, 1513–1525. https://doi.org/10.1007/s10530‐020‐02200‐0

Cuthbert, R. N., Darriet, F., Chabrerie, O., Lenoir, J., Courchamp, F., Claeys, C., Robert, V., & Renault, D. (2023). Invasive hematophagous arthropods and associated diseases in a changing world. Parasites & Vectors, 16, 291. https://doi.org/10.1186/s13071‐023‐05887‐x

Daly, E. Z., Chabrerie, O., Massol, F., Facon, B., Hess, M. C. M., Tasiemski, A., Grandjean, F., Chauvat, M., Viard, F., Forey, E., Folcher, L., Buisson, E., Boivin, T., Baltora‐Rosset, S., Ulmer, R., Gibert, P., Thiébaut, G., Pantel, J. H., Heger, T., … Renault, D. (2023). A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. Oikos, 2023, e09645. https://doi.org/10.1111/oik.09645

Damas‐Moreira, I., Riley, J. L., Harris, D. J., & Whiting, M. J. (2019). Can behaviour explain invasion success? A comparison between sympatric invasive and native lizards. Animal Behaviour, 151, 195–202.

Diagne, C., Leroy, B., Vaissière, A. C., Gozlan, R. E., Roiz, D., Jarić, I., & Courchamp, F. (2021). High and rising economic costs of biological invasions worldwide. Nature, 592(7855), 571–576. https://doi.org/10.1038/s41586‐021‐03405‐6

Diekmann, O. (1993). An invitation to structured (meta)population models. In S. A. Levin, T. M. Powell, & J. W. Steele (Eds.), Patch dynamics (Vol. 96). Springer. https://doi.org/10.1007/978‐3‐642‐50155‐5_12

Dietze, M. C., Fox, A., Beck‐Johnson, L. M., Betancourt, J. L., Hooten, M. B., Jarnevich, C. S., & White, E. P. (2018). Iterative near‐term ecological forecasting: Needs, opportunities, and challenges. Proceedings of the National Academy of Sciences of the United States of America, 115(7), 1424–1432. https://doi.org/10.1073/pnas.1710231115

Dominguez Almela, V., Palmer, S. C., Andreou, D., Gillingham, P. K., Travis, J. M., & Britton, J. R. (2022). Predicting the influence of river network configuration, biological traits and habitat quality interactions on riverine fish invasions. Diversity and Distributions, 28(2), 257–270. https://doi.org/10.1111/ddi.13459

Dominguez Almela, V., Palmer, S. C., Gillingham, P. K., Travis, J. M., & Britton, J. R. (2020). Integrating an individual‐based model with approximate Bayesian computation to predict the invasion of a freshwater fish provides insights into dispersal and range expansion dynamics. Biological Invasions, 22, 1461–1480. https://doi.org/10.1007/s10530‐020‐02197‐6

Drake, J. M. (2004). Allee effects and the risk of biological invasion. Risk Analysis: An International Journal, 24(4), 795–802. https://doi.org/10.1111/j.0272‐4332.2004.00479.x

Dudgeon, D. (2019). Multiple threats imperil freshwater biodiversity in the Anthropocene. Current Biology, 29(19), R960–R967.

Emiroğlu, Ö., Aksu, S., Başkurt, S., Britton, J. R., & Tarkan, A. S. (2023). Predicting how climate change and globally invasive piscivorous fishes will interact to threaten populations of endemic fishes in a freshwater biodiversity hotspot. Biological Invasions, 25, 1907–1920. https://doi.org/10.1007/s10530‐023‐03016‐4

Emlen, D. J., & Zimmer, C. (2019). Evolution: Making sense of life (3rd ed.). W. H. Freeman and Company.

Falaschi, M., Melotto, A., Manenti, R., & Ficetola, G. F. (2020). Invasive species and amphibian conservation. Herpetologica, 76(2), 216–227. https://doi.org/10.1655/0018‐0831‐76.2.216

Friesen, C. R., & Shine, R. (2019). At the invasion front, male cane toads (Rhinella marina) have smaller testes. Biology Letters, 15(7), 20190339. https://doi.org/10.1098/rsbl.2019.0339

Geburzi, J. C., & McCarthy, M. L. (2018). How do they do it?—Understanding the success of marine invasive species. In S. Jungblut, V. Liebich, & M. Bode (Eds.), YOUMARES 8—Oceans across boundaries: Learning from each other. Springer. https://doi.org/10.1007/978‐3‐319‐93284‐2_8

Goldberg, E. E., Lynch, H. J., Neubert, M. G., & Fagan, W. F. (2010). Effects of branching spatial structure and life history on the asymptotic growth rate of a population. Theoretical Ecology, 3, 137–152. https://doi.org/10.1007/s12080‐009‐0058‐0

Grabowska, J., & Przybylski, M. (2015). Life‐history traits of non‐native freshwater fish invaders differentiate them from natives in the Central European bioregion. Reviews in Fish Biology and Fisheries, 25, 165–178. https://doi.org/10.1007/s11160‐014‐9375‐5

Guareschi, S., Laini, A., England, J., Barrett, J., & Wood, P. J. (2021). Multiple co‐occurrent alien invaders constrain aquatic biodiversity in rivers. Ecological Applications, 31(6), e02385. https://doi.org/10.1002/eap.2385

Guareschi, S., Wood, P. J., England, J., Barrett, J., & Laini, A. (2022). Back to the future: Exploring riverine macroinvertebrate communities' invasibility. River Research and Applications, 38(8), 1374–1386. https://doi.org/10.1002/rra.3975

Haase, P., Bowler, D. E., Baker, N. J., Bonada, N., Domisch, S., Garcia Marquez, J. R., Heino, J., Hering, D., Jähnig, S. C., Schmidt‐Kloiber, A., Stubbington, R., Altermatt, F., Álvarez‐Cabria, M., Amatulli, G., Angeler, D. G., Archambaud‐Suard, G., Jorrín, I. A., Aspin, T., Azpiroz, I., … Welti, E. A. (2023). The recovery of European freshwater biodiversity has come to a halt. Nature, 620(7974), 582–588. https://doi.org/10.1038/s41586‐023‐06400‐1

Hamed, K. H., & Rao, A. R. (1998). A modified Mann‐Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196. https://doi.org/10.1016/S0022‐1694(97)00125‐X

Harvey, R. G., & Mazzotti, F. J. (2016). The invasion curve: A tool for understanding invasive species Management in South Florida. Publication no. WEC‐347. Institute of Food and Agricultural Sciences, University of Florida.

Haubrock, P. J., Ahmed, D. A., Cuthbert, R. N., Stubbington, R., Domisch, S., Marquez, J. R., Beidas, A., Amatulli, G., Kiesel, J., Shen, L. Q., Soto, I., Angeler, D. G., Bonada, N., Cañedo‐Argüelles, M., Csabai, Z., Datry, T., de Eyto, E., Dohet, A., Drohan, E., … Haase, P. (2022). Invasion impacts and dynamics of a European‐wide introduced species. Global Change Biology, 28(15), 4620–4632. https://doi.org/10.1111/gcb.16207

Haubrock, P. J., Carneiro, L., Macêdo, R. L., Balzani, P., Soto, I., Rasmussen, J. J., Wiberg‐Larsen, P., Csabai, Z., Várbíró, G., Murphy, J. F., Jones, J. I., Verdonschot, R. C. M., Verdonschot, P., van der Lee, G., & Ahmed, D. A. (2023). Advancing our understanding of biological invasions with long‐term biomonitoring data. Biological Invasions, 25(11), 3637–3649. https://doi.org/10.1007/s10530‐023‐03141‐0

Haubrock, P. J., Inghilesi, A. F., Mazza, G., Bendoni, M., Solari, L., & Tricarico, E. (2019). Burrowing activity of Procambarus clarkii on levees: Analysing behaviour and burrow structure. Wetlands Ecology and Management, 27, 497–511.

Haubrock, P. J., Pilotto, F., Soto, I., Kühn, I., Verreycken, H., Seebens, H., Cuthbert, R. N., & Haase, P. (2023). Long‐term trends in abundances of non‐native species across biomes, realms, and taxonomic groups in Europe. Science of the Total Environment, 884, 163808. https://doi.org/10.1016/j.scitotenv.2023.163808

Haubrock, P. J., & Soto, I. (2023). Valuing the information hidden in true long‐term data for invasion science. Biological Invasions, 25, 2385–2394. https://doi.org/10.1007/s10530‐023‐03091‐7

Havel, J. E., Kovalenko, K. E., Thomaz, S. M., Amalfitano, S., & Kats, L. B. (2015). Aquatic invasive species: Challenges for the future. Hydrobiologia, 750, 147–170. https://doi.org/10.1007/s10750‐014‐2166‐0

Hayes, K. R., & Barry, S. C. (2008). Are there any consistent predictors of invasion success? Biological Invasions, 10, 483–506. https://doi.org/10.1007/s10530‐007‐9146‐5

Heger, T., Jeschke, J. M., & Kollmann, J. (2021). Some reflections on current invasion science and perspectives for an exciting future. NeoBiota, 68, 79–100. https://doi.org/10.3897/neobiota.68.68997

Hufbauer, R. A., Facon, B., Ravigné, V., Turgeon, J., Foucaud, J., Lee, C. E., Rey, O., & Estoup, A. (2012). Anthropogenically induced adaptation to invade (AIAI): Contemporary adaptation to human‐altered habitats within the native range can promote invasions. Evolutionary Applications, 5(1), 89–101. https://doi.org/10.1111/j.1752‐4571.2011.00211.x

Hughes, A. C., & Grumbine, R. E. (2023). The Kunming‐Montreal global biodiversity framework: What it does and does not do, and how to improve it. Frontiers in Environmental Science, 11, 1281536. https://doi.org/10.3389/fenvs.2023.1281536

Hui, C., & Richardson, D. M. (2017). Invasion dynamics. Oxford University Press.

Hulme, P. E. (2017). Climate change and biological invasions: Evidence, expectations, and response options. Biological Reviews, 92(3), 1297–1313. https://doi.org/10.1111/brv.12282

IPCC. (2005). Guidance notes for lead authors of the IPCC fourth assessment report on addressing uncertainties. Intergovernmental Panel on Climate Change, WMO & UNEP. http://www.ipcc.ch/pdf/assessment‐report/ar4/wg1/ar4‐uncertaintyguidancenote.pdf

Lázaro‐Lobo, A., Alonso, A., Saldaña‐López, A., Granda, E., Romero‐Blanco, A., Fernández, R. D., & Castro‐Díez, P. (2023). Impacts of plant invasions on ecosystem functionality: A perspective for ecosystem health and ecosystem services. In S. Tripathi, R. Bhadouria, P. Srivastava, R. Singh, & D. R. Batish (Eds.), Plant invasions and global climate change (pp. 31–56). Springer.

Le Roux, J. (2021). The evolutionary ecology of invasive species. Academic Press.

Leger, E. A., & Espeland, E. K. (2010). Coevolution between native and invasive plant competitors: Implications for invasive species management. Evolutionary Applications, 3(2), 169–178. https://doi.org/10.1111/j.1752‐4571.2009.00105.x

Leroy, B., Bellard, C., Dias, M. S., Hugueny, B., Jézéquel, C., Leprieur, F., Oberdorff, T., Robuchon, M., & Tedesco, P. A. (2023). Major shifts in biogeographic regions of freshwater fishes as evidence of the Anthropocene epoch. Science Advances, 9(46), eadi5502. https://doi.org/10.1126/sciadv.adi5502

Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. (2000). 100 of the world's worst invasive alien species a selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG) a Specialist Group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN). First published as special lift‐out in Aliens 12, December 2000. Updated and reprinted version: November 2004.

Macêdo, R. L., Russo, P., Corrêa, R. F., Rocha, O., dos Santos, L. N., & Branco, C. W. (2021). The drifting dinoflagellate Ceratium furcoides (Levander) Langhans 1925: Fundamental niche shift during global invasion. Hydrobiologia, 848, 2105–2117.

Masson, L., Masson, G., Beisel, J. N., Gutowsky, L. F. G., & Fox, M. G. (2018). Consistent life history shifts along invasion routes? An examination of round goby populations invading on two continents. Diversity and Distributions, 24(6), 841–852. https://doi.org/10.1111/ddi.12726

Matzek, V. (2012). Trait values, not trait plasticity, best explain invasive species' performance in a changing environment. PLoS One, 7(10), e48821. https://doi.org/10.1371/journal.pone.0048821

Milardi, M., Gavioli, A., Castaldelli, G., & Soininen, J. (2020). Partial decoupling between exotic fish and habitat constraints remains evident in late invasion stages. Aquatic Sciences, 82, 1–14. https://doi.org/10.1007/s00027‐019‐0688‐2

Milardi, M., Gavioli, A., Soana, E., Lanzoni, M., Fano, E. A., & Castaldelli, G. (2020). The role of species introduction in modifying the functional diversity of native communities. Science of the Total Environment, 699, 134364. https://doi.org/10.1016/j.scitotenv.2019.134364

Milardi, M., Iemma, A., Waite, I. R., Gavioli, A., Soana, E., & Castaldelli, G. (2022). Natural and anthropogenic factors drive large‐scale freshwater fish invasions. Scientific Reports, 12(1), 10465. https://doi.org/10.1038/s41598‐022‐14556‐5

Müller‐Schärer, H., & Steinger, T. (2004). Predicting evolutionary change in invasive, exotic plants and its consequences for plant‐herbivore interactions. In L. E. Ehler, R. Sforza, & T. Mateille (Eds.), Genetics, evolution and biological control (pp. 137–162). CAB International.

Myles‐Gonzalez, E., Burness, G., Yavno, S., Rooke, A., & Fox, M. G. (2015). To boldly go where no goby has gone before: Boldness, dispersal tendency, and metabolism at the invasion front. Behavioral Ecology, 26(4), 1083–1090. https://doi.org/10.1093/beheco/arv050

Nakagawa, S., Noble, D. W., Senior, A. M., & Lagisz, M. (2017). Meta‐evaluation of meta‐analysis: Ten appraisal questions for biologists. BMC Biology, 15(1), 18. https://doi.org/10.1186/s12915‐017‐0357‐7

Niedrist, G. H., Hilpold, A., & Kranebitter, P. (2023). Unveiling the rise of non‐native fishes in eastern alpine mountain rivers: Population trends and implications. Journal of Fish Biology, 103(5), 1085–1094. https://doi.org/10.1111/jfb.15508

Pagad, S., Bisset, S., Genovesi, P., Groom, Q., Hirsch, T., Jetz, W., Ranipeta, A., Schigel, D., Sica, Y. V., & McGeoch, M. A. (2022). Country compendium of the global register of introduced and invasive species. Scientific Data, 9(1), 391.

Pander, J., Habersetzer, L., Casas‐Mulet, R., & Geist, J. (2022). Effects of stream thermal variability on macroinvertebrate community: Emphasis on native versus non‐native gammarid species. Frontiers in Environmental Science, 10, 869396. https://doi.org/10.3389/fenvs.2022.869396

Pergl, J., Pyšek, P., Essl, F., Jeschke, J. M., Courchamp, F., Geist, J., Hejda, M., Kowarik, I., Mill, A., Musseau, C., Pipek, P., Saul, W. C., von Schmalensee, M., & Strayer, D. (2020). Need for routine tracking of biological invasions. Conservation Biology, 34, 1311–1314. https://doi.org/10.1111/cobi.13445

Pilotto, F., Kühn, I., Adrian, R., Alber, R., Alignier, A., Andrews, C., & Haase, P. (2020). Meta‐analysis of multidecadal biodiversity trends in Europe. Nature Communications, 11(1), 3486. https://doi.org/10.1038/s41467‐020‐17171‐y

Pincheira‐Donoso, D., Tregenza, T., Butlin, R. K., & Hodgson, D. J. (2018). Sexes and species as rival units of niche saturation during community assembly. Global Ecology and Biogeography, 27(5), 593–603. https://doi.org/10.1111/geb.12722

Purcell, K. M., & Stockwell, C. A. (2015). An evaluation of the genetic structure and post‐introduction dispersal of a non‐native invasive fish to the North Island of New Zealand. Biological Invasions, 17, 625–636. https://doi.org/10.1007/s10530‐014‐0753‐7

Pyšek, P., Jarošík, V., Müllerová, J., Pergl, J., & Wild, J. (2008). Comparing the rate of invasion by Heracleum mantegazzianum at continental, regional, and local scales. Diversity and Distributions, 14, 355–363. https://doi.org/10.1111/j.1472‐4642.2007.00431.x

Rehage, J. S., & Sih, A. (2004). Dispersal behavior, boldness, and the link to invasiveness: A comparison of four Gambusia species. Biological Invasions, 6(3), 379–391. https://doi.org/10.1023/B:BINV.0000034618.93140.a5

Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849–873. https://doi.org/10.1111/brv.12480

Renault, D. (2020). A review of the phenotypic traits associated with insect dispersal polymorphism and experimental designs for sorting out resident and disperser phenotypes. Insects, 11(4), 214. https://doi.org/10.3390/insects11040214

Renault, D., Hess, M. C. M., Braschi, J., Cuthbert, R., Sperandii, M. G., Bazzichetto, M., Chabrerie, O., Thiébaut, G., Buisson, E., Grandjean, F., Bittebiere, A. K., Mouchet, M., & Massol, F. (2022). Advancing biological invasion hypothesis testing using functional diversity. Science of the Total Environment, 834, 155102. https://doi.org/10.1016/j.scitotenv.2022.155102

Renault, D., Laparie, M., McCauley, S. J., & Bonte, D. (2018). Environmental adaptations, ecological filtering and dispersal, central to insect invasions. Annual Review of Entomology, 63, 345–368. https://doi.org/10.1146/annurev‐ento‐020117‐043315

Richardson, D. M., & Ricciardi, A. (2013). Misleading criticisms of invasion science: A field guide. Diversity and Distributions, 19(12), 1461–1467.

Rilov, G., Canning‐Clode, J., & Guy‐Haim, T. (2023). Ecological impacts of invasive ecosystem engineers: A global perspective across terrestrial and aquatic systems. Functional Ecology, 38(1), 37–51. https://doi.org/10.1111/1365‐2435.14406

Roy, H. E., Pauchard, A., Stoett, P., Renard Truong, T., Bacher, S., Galil, B. S., Hulme, P. E., Ikeda, T., Sankaran, K. V., McGeoch, M. A., Meyerson, L. A., Nuñez, M. A., Ordonez, A., Rahlao, S. J., Schwindt, E., Seebens, H., Sheppard, A. W., & Vandvik, V. (Eds.). (2023). Summary for policymakers of the thematic assessment report on invasive alien species and their control of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat. https://doi.org/10.5281/zenodo.7430692

Roy, H. E., Rabitsch, W., Scalera, R., Stewart, A., Gallardo, B., Genovesi, P., Essl, F., Adriaens, T., Bacher, S., Booy, O., Branquart, E., Brunel, S., Copp, G. H., Dean, H., D'hondt, B., Josefsson, M., Kenis, M., Kettunen, M., Linnamagi, M., … Zenetos, A. (2018). Developing a framework of minimum standards for the risk assessment of alien species. Journal of Applied Ecology, 55, 526–538. https://doi.org/10.1111/1365‐2664.13025

Schluter, D. (2000). The ecology of adaptive radiation. Oxford University Press.

Schrieber, K., & Lachmuth, S. (2017). The genetic paradox of invasions revisited: The potential role of inbreeding × environment interactions in invasion success. Biological Reviews, 92, 939–952. https://doi.org/10.1111/brv.12263

Seebens, H., Bacher, S., Blackburn, T. M., Capinha, C., Dawson, W., Dullinger, S., Genovesi, P., Hulme, P. E., van Kleunen, M., Kühn, I., Jeschke, J. M., Lenzner, B., Liebhold, A. M., Pattison, Z., Pergl, J., Pyšek, P., Winter, M., & Essl, F. (2021). Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 27, 970–982. https://doi.org/10.1111/gcb.15333

Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., Pagad, S., Pyšek, P., Winter, M., Arianoutsou, M., Bacher, S., Blasius, B., Brundu, G., Capinha, C., Celesti‐Grapow, L., Dawson, W., Dullinger, S., Fuentes, N., Jäger, H., … Essl, F. (2017). No saturation in the accumulation of alien species worldwide. Nature Communications, 8, 14435. https://doi.org/10.1038/ncomms14435

Shackleton, R. T., Shackleton, C. M., & Kull, C. A. (2019). The role of invasive alien species in shaping local livelihoods and human well‐being: A review. Journal of Environmental Management, 229, 145–157. https://doi.org/10.1016/j.jenvman.2018.05.007

Simberloff, D. (2013). Invasive species: What everyone needs to know. Oxford University Press.

Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., Courchamp, F., Galil, B., García‐Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E., & Vilà, M. (2013). Impacts of biological invasions: what's what and the way forward. Trends in Ecology & Evolution, 28(1), 58–66.

Soto, I., Ahmed, D. A., Balzani, P., Cuthbert, R. N., & Haubrock, P. J. (2023). Sigmoidal curves reflect impacts and dynamics of aquatic invasive species. Science of the Total Environment, 872, 161818. https://doi.org/10.1016/j.scitotenv.2023.161818

Soto, I., Ahmed, D. A., Beidas, A., Oficialdegui, F. J., Tricarico, E., Angeler, D. G., Amatulli, G., Briski, E., Datry, T., Dohet, A., Domisch, S., England, J., Feio, M. J., Forcellini, M., Johnson, R. K., Jones, J. I., Larrañaga, A., L'Hoste, L., Murphy, J. F., … Haubrock, P. J. (2023). Long‐term trends in crayfish invasions across European rivers. Science of the Total Environment, 867, 161537. https://doi.org/10.1016/j.scitotenv.2023.161537

Soto, I., Balzani, P., Carneiro, L., Cuthbert, R. N., Macêdo, R., Tarkan, A. S., Ahmed, D., Bang, A., Bacela‐Spychalska, K., Bailey, S., Baudry, T., Ballesteros, L., Bortolus, A., Briski, E., Britton, R., Buřič, M., Camacho‐Cervantes, M., Cano‐Barbacil, C., Copilaș‐Ciocianu, D., … Haubrock, P. J. (2024). Taming the terminological tempest in invasion science. Biological Reviews. https://doi.org/10.1111/brv.13071

Soto, I., Cuthbert, R. N., Ahmed, D. A., Kouba, A., Domisch, S., Marquez, J. R., Beidas, A., Amatulli, G., Kiesel, J., Shen, L. Q., Florencio, M., Lima, H., Briski, E., Altermatt, F., Archambaud‐Suard, G., Borza, P., Csabai, Z., Datry, T., Floury, M., … Haubrock, P. J. (2023). Tracking a killer shrimp: Dikerogammarus villosus invasion dynamics across Europe. Diversity and Distributions, 29, 157–172. https://doi.org/10.1111/ddi.13649

Spear, M. J., Walsh, J. R., Ricciardi, A., & Zanden, M. J. V. (2021). The invasion ecology of sleeper populations: Prevalence, persistence, and abrupt shifts. Bioscience, 71(4), 357–369.

Strayer, D. L., D'Antonio, C. M., Essl, F., Fowler, M. S., Geist, J., Hilt, S., Jarić, I., Jöhnk, K., Jones, C. G., Lambin, X., Latzka, A. W., Pergl, J., Pyšek, P., Robertson, P., von Schmalensee, M., Stefansson, R. A., Wright, J., & Jeschke, J. M. (2017). Boom‐bust dynamics in biological invasions: Towards an improved application of the concept. Ecology Letters, 20, 1337–1350. https://doi.org/10.1111/ele.12822

Taylor, C. M., & Hastings, A. (2005). Allee effects in biological invasions. Ecology Letters, 8, 895–908. https://doi.org/10.1111/j.1461‐0248.2005.00787.x

Thomsen, M. S., Olden, J. D., Wernberg, T., Griffin, J. N., & Silliman, B. R. (2011). A broad framework to organize and compare ecological invasion impacts. Environmental Research, 111, 899–908. https://doi.org/10.1016/j.envres.2011.05.024

Tobin, P. C., Berec, L., & Liebhold, A. M. (2011). Exploiting Allee effects for managing biological invasions. Ecology Letters, 14, 615–624. https://doi.org/10.1111/j.1461‐0248.2011.01614.x

Tsutsui, N. D., Suarez, A. V., Holway, D. A., & Case, T. J. (2000). Reduced genetic variation and the success of an invasive species. Proceedings of the National Academy of Sciences of the United States of America, 97, 5948–5953. https://doi.org/10.1073/pnas.100110397

van Kleunen, M., Weber, E., & Fischer, M. (2010). A meta‐analysis of trait differences between invasive and non‐invasive plant species. Ecology Letters, 13, 235–245. https://doi.org/10.1111/j.1461‐0248.2009.01418.x

Venette, R. C., Gordon, D. R., Juzwik, J., Koch, F. H., Liebhold, A. M., Peterson, R. K., Sing, S. E., & Yemshanov, D. (2021). Early intervention strategies for invasive species management: Connections between risk assessment, prevention efforts, eradication, and other rapid responses. In T. M. Poland, T. Patel‐Weynand, D. M. Finch, C. F. Miniat, D. C. Hayes, & V. M. Lopez (Eds.), Invasive species in forests and rangelands of the United States: A comprehensive science synthesis for the United States Forest Sector (pp. 111–131). Heidelberg Germany: Springer International Publishing. https://doi.org/10.1007/978‐3‐030‐45367‐1_6

Viechtbauer, W. (2010). Conducting meta‐analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48. https://doi.org/10.18637/jss.v036.i03

Vilizzi, L., Copp, G. H., Hill, J. E., Adamovich, B., Aislabie, L., Akin, D., al‐Faisal, A. J., Almeida, D., Azmai, M. N. A., Bakiu, R., Bellati, A., Bernier, R., Bies, J. M., Bilge, G., Branco, P., Bui, T. D., Canning‐Clode, J., Cardoso Ramos, H. A., Castellanos‐Galindo, G. A., … Clarke, S. (2021). A global‐scale screening of non‐native aquatic organisms to identify potentially invasive species under current and future climate conditions. Science of the Total Environment, 788, 147868. https://doi.org/10.1016/j.scitotenv.2021.147868

Vilizzi, L., Hill, J. E., Piria, M., & Copp, G. H. (2022). A protocol for screening potentially invasive non‐native species using weed risk assessment‐type decision‐support tools. Science of the Total Environment, 832, 154966. https://doi.org/10.1016/j.scitotenv.2022.154966

Westcott, D. A., & Fletcher, C. S. (2011). Biological invasions and the study of vertebrate dispersal of plants: Opportunities and integration. Acta Oecologica, 37, 650–656. https://doi.org/10.1016/j.actao.2011.04.007

Wilson, J. R. U., Dormontt, E. E., Prentis, P. J., Lowe, A. J., & Richardson, D. M. (2009). Biogeographic concepts define invasion biology. Trends in Ecology & Evolution, 24, 586. https://doi.org/10.1016/j.tree.2009.07.004

Zhang, L., Rohr, J., Cui, R., Xin, Y., Han, L., Yang, X., Gu, S., du, Y., Liang, J., Wang, X., Wu, Z., Hao, Q., & Liu, X. (2022). Biological invasions facilitate zoonotic disease emergences. Nature Communications, 13, 1762. https://doi.org/10.1038/s41467‐022‐29378‐2

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A Global Account of Established Non-Native Fish Species

. 2025 Aug ; 31 (8) : e70451.

Parallels and discrepancies between non-native species introductions and human migration

. 2025 Jun ; 100 (3) : 1365-1395. [epub] 20250220

Conceptual and ethical considerations in invasion science

. 2025 Apr ; 75 (4) : 317-330. [epub] 20250122

Testing the Dispersal-Origin-Status-Impact (DOSI) scheme to prioritise non-native and translocated species management

. 2024 Dec 28 ; 14 (1) : 31059. [epub] 20241228

Some Like It Cold: Long-Term Assessment of a Near-Global Invader

. 2024 Dec ; 14 (12) : e70760. [epub] 20241222

Framing challenges and polarized issues in invasion science: toward an interdisciplinary agenda

. 2024 Dec ; 74 (12) : 825-839. [epub] 20241014

Competency in invasion science: addressing stagnation challenges by promoting innovation and creative thinking

. 2024 Nov ; 74 (5) : 916-927. [epub] 20240905

Prioritising non-native fish species for management actions in three Polish rivers using the newly developed tool-dispersal-origin-status-impact scheme

. 2024 ; 12 () : e18300. [epub] 20241031

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...