Some Like It Cold: Long-Term Assessment of a Near-Global Invader
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39717651
PubMed Central
PMC11663627
DOI
10.1002/ece3.70760
PII: ECE370760
Knihovny.cz E-zdroje
- Klíčová slova
- climatic suitability, global change, invasion trajectory, invasive species, invertebrates, long‐term data,
- Publikační typ
- časopisecké články MeSH
Long-term studies depicting the multicontinental invasion trajectories of species are often constrained by the scarcity of documented records, especially for invertebrates. The red swamp crayfish, Procambarus clarkii (Decapoda: Cambaridae), stands out as an uncommon example of hypersuccessful invasive species with a well-known invasion history at both regional and global levels. This allows for the use of its records to track distribution dynamics and bioclimatic preferences over time. Through multiple temporal comparisons, the global bioclimatic tendencies of the species have been explored over a period exceeding a century (1854-2023) using linear models with generalized least squares estimation and two-sample t-tests. This specific setup provides a rare focus on biological invasions at both broad temporal and spatial scales. The results highlight climatic trends in the invasion process of the species, including decreases in the values of bioclimatic variables associated with temperature and precipitation. This trend encompasses not only mean values but also both extreme (minimum and maximum) and is coupled with increases in elevation and aridity values in the areas with the presence of the species. The findings indicate that the species can engage in new ecological interactions and further affect range-restricted species in climatic refuges once considered protected. These findings help anticipate changes in the species' invasion trajectory, suggesting possible expansions into colder, less humid climates and higher altitudes. This knowledge supports effective monitoring and early detection for management and conservation efforts.
Centre Balear de Biodiversitat Universitat de les Illes Balears Palma de Mallorca Spain
Department of Life Sciences and Systems Biology University of Torino Torino Italy
Zobrazit více v PubMed
Angeler, D. G. , Sánchez‐Carrillo S., García G., and Alvarez‐Cobelas M.. 2001. “The Influence of Procambarus clarkii (Cambaridae, Decapoda) on Water Quality and Sediment Characteristics in a Spanish Floodplain Wetland.” Hydrobiologia 464: 89–98.
Barbet‐Massin, M. , Rome Q., Villemant C., and Courchamp F.. 2018. “Can Species Distribution Models Really Predict the Expansion of Invasive Species?” PLoS One 13, no. 3: 1–14. 10.1371/journal.pone.0193085. PubMed DOI PMC
Bates, O. K. , and Bertelsmeier C.. 2021. “Climatic Niche Shifts in Introduced Species.” Current Biology 31, no. 19: R1252–R1266. 10.1016/j.cub.2021.08.035. PubMed DOI
Ben‐Shachar, M. , Lüdecke D., and Makowski D.. 2020. “Effectsize: Estimation of Effect Size Indices and Standardized Parameters.” Journal of Open Source Software 5: 2815.
Blanca, M. J. , Alarcón R., Arnau J., Bono R., and Bendayan R.. 2018. “Effect of Variance Ratio on ANOVA Robustness: Might 1.5 Be the Limit?” Behavior Research Methods 50, no. 3: 937–962. 10.3758/s13428-017-0918-2. PubMed DOI
Capinha, C. , Anastácio P., and Tenedório J. A.. 2012. “Predicting the Impact of Climate Change on the Invasive Decapods of the Iberian Inland Waters: An Assessment of Reliability.” Biological Invasions 14, no. 8: 1737–1751. 10.1007/s10530-012-0187-z. DOI
Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences, 579. New York: Routledge Academic.
de Oliveira, L. R. , Brito G., Gama M., Ovando X. M. C., Anastácio P., and Cardoso S. J.. 2023. “Non‐Native Decapods in South America: Risk Assessment and Potential Impacts.” Diversity 15: 841. 10.3390/d15070841. DOI
Drobinski, P. , Da Silva N., Bastin S., et al. 2020. “How Warmer and Drier will the Mediterranean RegiON be at the End of the Twenty‐First Century?” Regional Environmental Change 20: 1–12.
Fick, S. E. , and Hijmans R. J.. 2017. “WorldClim 2: New 1‐Km Spatial Resolution Climate Surfaces for Global Land Areas.” International Journal of Climatology 37, no. 12: 4302–4315. 10.1002/joc.5086. DOI
Gallardo, B. , Zieritz A., and Aldridge D. C.. 2015. “The Importance of the Human Footprint in Shaping the Global Distribution of Terrestrial, Freshwater and Marine Invaders.” PLoS One 10, no. 5: 1–17. 10.1371/journal.pone.0125801. PubMed DOI PMC
Green, L. , Havenhand J. N., and Kvarnemo C.. 2020. “Evidence of Rapid Adaptive Trait Change to Local Salinity in the Sperm of an Invasive Fish.” Evolutionary Applications 13, no. 3: 533–544. 10.1111/eva.12859. PubMed DOI PMC
Guareschi, S. , Cancellario T., Oficialdegui F. J., and Clavero M.. 2024. “Insights From the Past: Invasion Trajectory and Niche Trends of a Global Freshwater Invader.” Global Change Biology 30, no. 1: 1–13. 10.1111/gcb.17059. PubMed DOI
Guareschi, S. , and Wood P. J.. 2020. “Exploring the Desiccation Tolerance of the Invasive Bivalve Corbicula fluminea (Müller 1774) at Different Temperatures.” Biological Invasions 22: 2813–2824. 10.1007/s10530-020-02291-9. DOI
Guareschi, S. , Wood P. J., England J., Barrett J., and Laini A.. 2022. “Back to the Future: Exploring Riverine Macroinvertebrate Communities' Invasibility.” River Research and Applications 38: 1374–1386. 10.1002/rra.3975. DOI
Haubrock, P. J. , Soto I., Ahmed D. A., et al. 2024. “Biological Invasions are a Population‐Level Rather Than a Species‐Level Phenomenon.” Global Change Biology 30, no. 5: e17312. PubMed
Hijmans, R. J. , Phillips S., Leathwick J., and Elith J.. 2023. “Dismo: Species Distribution Modeling.” R Package Version 1.3‐14.
Hill, M. P. , Gallardo B., and Terblanche J. S.. 2017. “A Global Assessment of Climatic Niche Shifts and Human Influence in Insect Invasions.” Global Ecology and Biogeography 26, no. 6: 679–689. 10.1111/geb.12578. DOI
Ion, M. C. , Bloomer C. C., Bărăscu T. I., et al. 2024. “World of Crayfish™: A Web Platform Towards Real‐Time Global Mapping of Freshwater Crayfish and Their Pathogens.” PeerJ 12: e18229. 10.7717/peerj.18229. PubMed DOI PMC
IPBES . 2023. Summary for Policymakers of the Thematic Assessment Report on Invasive Alien Species and Their Control of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services, edited by Roy H. E., Pauchard A., Stoett P., et al. Bonn, Germany: IPBES Secretariat. 10.5281/zenodo.7430692. DOI
Juozaitienė, R. , Seebens H., Latombe G., Essl F., and Wit E. C.. 2023. “Analysing Ecological Dynamics With Relational Event Models: The Case of Biological Invasions.” Diversity and Distributions 29, no. 10: 1208–1225. 10.1111/ddi.13752. DOI
Karger, D. N. , Conrad O., Böhner J., et al. 2017. “Climatologies at High Resolution for the Earth's Land Surface Areas.” Scientific Data 4: 1–20. 10.1038/sdata.2017.122. PubMed DOI PMC
Karger, D. N. , and Zimmermann N. E.. 2018. “CHELSAcruts—High Resolution Temperature and Precipitation Timeseries for the 20th Century and Beyond.” EnviDat. 10.16904/envidat.159. DOI
Kouba, A. , Oficialdegui F. J., Cuthbert R. N., et al. 2022. “Identifying Economic Costs and Knowledge Gaps of Invasive Aquatic Crustaceans.” Science of the Total Environment 813: 152325. 10.1016/j.scitotenv.2021.152325. PubMed DOI
Kouba, A. , Tíkal J., Císař P., et al. 2016. “The Significance of Droughts for Hyporheic Dwellers: Evidence From Freshwater Crayfish.” Scientific Reports 6, no. 1: 26569. PubMed PMC
Larson, E. R. , and Olden J. D.. 2012. “Using Avatar Species to Model the Potential Distribution of Emerging Invaders.” Global Ecology and Biogeography 21, no. 11: 1114–1125. 10.1111/j.1466-8238.2012.00758.x. DOI
Lenth, R. 2024. “Emmeans: Estimated Marginal Means, Aka Least‐Squares Means.” R Package Version 1.10.0.
Leprieur, F. , Beauchard O., Blanchet S., Oberdorff T., and Brosse S.. 2008. “Fish Invasions in the world's River Systems: When Natural Processes Are Blurred by Human Activities.” PLoS Biology 6, no. 2: 404–410. 10.1371/journal.pbio.0060028. PubMed DOI PMC
Liu, C. , Wolter C., Xian W., and Jeschke J. M.. 2020. “Most Invasive Species Largely Conserve Their Climatic Niche.” Proceedings of the National Academy of Sciences of the United States of America 117, no. 38: 23643–23651. 10.1073/pnas.2004289117. PubMed DOI PMC
Lodge, D. M. , Deines A., Gherardi F., et al. 2012. “Global Introductions of Crayfishes: Evaluating the Impact of Species Invasions on Ecosystem Services.” Annual Review of Ecology, Evolution, and Systematics 43: 449–472. 10.1146/annurev-ecolsys-111511-103919. DOI
Loureiro, T. G. , Anastácio P. M. S. G., Araujo P. B., Souty‐Grosset C., and Almerão M. P.. 2015. “Red Swamp Crayfish: Biology, Ecology and Invasion ‐ An Overview.” Nauplius 23, no. 1: 1–19. 10.1590/s0104-64972014002214. DOI
Lustenhouwer, N. , and Parker I. M.. 2022. “Beyond Tracking Climate: Niche Shifts During Native Range Expansion and Their Implications for Novel Invasions.” Journal of Biogeography 49: 1481–1493. 10.1111/jbi.14395. DOI
Manenti, R. , Falaschi M., Monache D. D., Marta S., and Ficetola G. F.. 2020. “Network‐Scale Effects of Invasive Species on Spatially‐Structured Amphibian Populations.” Ecography 43, no. 1: 119–127. 10.1111/ecog.04571. DOI
Matzek, V. , Pujalet M., and Cresci S.. 2015. “What Managers Want From Invasive Species Research Versus What They Get.” Conservation Letters 8, no. 1: 33–40. 10.1111/conl.12119. DOI
Neculae, A. , Barnett Z. C., Miok K., et al. 2024. “Living on the Edge: Crayfish as Drivers to Anoxification of Their Own Shelter Microenvironment.” PLoS One 19, no. 1: e0287888. 10.1371/journal.pone.0287888. PubMed DOI PMC
Oficialdegui, F. J. , Clavero M., Sánchez M. I., et al. 2019. “Unravelling the Global Invasion Routes of a Worldwide Invader, the Red Swamp Crayfish ( Procambarus clarkii ).” Freshwater Biology 64, no. 8: 1382–1400. 10.1111/fwb.13312. DOI
Oficialdegui, F. J. , Sánchez M. I., and Clavero M.. 2020. “One Century Away From Home: How the Red Swamp Crayfish Took Over the World.” Reviews in Fish Biology and Fisheries 30, no. 1: 121–135. 10.1007/s11160-020-09594-z. DOI
Pearman, P. B. , Guisan A., Broennimann O., and Randin C. F.. 2008. “Niche Dynamics in Space and Time.” Trends in Ecology & Evolution 23, no. 3: 149–158. 10.1016/j.tree.2007.11.005. PubMed DOI
Pinheiro, J. , and Bates D.. 2023. “nlme: Linear and Nonlinear Mixed Effects Models.” R Package Version 3.1‐164.
R Core Team . 2024. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Rick, T. C. , and Lockwood R.. 2013. “Integrating Paleobiology, Archeology, and History to Inform Biological Conservation.” Conservation Biology 27, no. 1: 45–54. 10.1111/j.1523-1739.2012.01920.x. PubMed DOI
Rodríguez, C. F. , Bécares E., Fernández‐Aláez M., and Fernández‐Aláez C.. 2005. “Loss of Diversity and Degradation of Wetlands as a Result of Introducing Exotic Crayfish.” Biological Invasions Invasions 7: 75–85. 10.1007/1-4020-3870-4_7. DOI
Satmari, A. , Miok K., Ion M. C., Zaharia C., Schrimpf A., and Pârvulescu L.. 2023. “Headwater Refuges: Flow Protects Austropotamobius Crayfish From Faxonius limosus Invasion.” NeoBiota 89: 71–94. 10.3897/neobiota.89.110085. DOI
Sato, D. X. , Matsuda Y., Usio N., Funayama R., Nakayama K., and Makino T.. 2023. “Genomic Adaptive Potential to Cold Environments in the Invasive Red Swamp Crayfish.” IScience 26, no. 8: 107267. PubMed PMC
Souty‐Grosset, C. , Anastácio P. M., Aquiloni L., et al. 2016. “The Red Swamp Crayfish Procambarus clarkii in Europe: Impacts on Aquatic Ecosystems and Human Well‐Being.” Limnologica 58: 78–93. 10.1016/j.limno.2016.03.003. DOI
Title, P. O. , and Bemmels J. B.. 2018. “ENVIREM: An Expanded Set of Bioclimatic and Topographic Variables Increases Flexibility and Improves Performance of Ecological Niche Modeling.” Ecography 41, no. 2: 291–307. 10.1111/ecog.02880. DOI
Veselý, L. , Buřič M., and Kouba A.. 2015. “Hardy Exotics Species in Temperate Zone: Can “Warm Water” Crayfish Invaders Establish Regardless of Low Temperatures?” Scientific Reports 5, no. 1: 16340. PubMed PMC
Viana, D. S. , Oficialdegui F. J., Soriano M. D. C., Hermoso V., and Clavero M.. 2023. “Niche Dynamics Along Two Centuries of Multiple Crayfish Invasions.” Journal of Animal Ecology 92, no. 11: 2138–2150. 10.1111/1365-2656.14007. PubMed DOI
Watanabe, R. , and Ohba S.. 2022. “Comparison of the Community Composition of Aquatic Insects Between Wetlands With and Without the Presence of Procambarus clarkii : A Case Study From Japanese Wetlands.” Biological Invasions 24, no. 4: 1033–1047. 10.1007/s10530-021-02700-7. DOI
Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis, 260. New York: Springer‐Verlag.
Zhang, Z. , Capinha C., Usio N., et al. 2020. “Impacts of Climate Change on the Global Potential Distribution of Two Notorious Invasive Crayfishes.” Freshwater Biology 65, no. 3: 353–365.