The significance of droughts for hyporheic dwellers: evidence from freshwater crayfish
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27225308
PubMed Central
PMC4880899
DOI
10.1038/srep26569
PII: srep26569
Knihovny.cz E-zdroje
- MeSH
- analýza přežití MeSH
- biodiverzita MeSH
- biologické modely MeSH
- období sucha * MeSH
- severní raci klasifikace fyziologie MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Freshwater biodiversity is globally threatened by various factors while severe weather events like long-term droughts may be substantially devastating. In order to remain in contact with the water or stay in a sufficiently humid environment at drying localities, the ability to withstand desiccation by dwelling in the hyporheic zone, particularly through vertical burrowing is crucial. We assessed the ability of three European native and five non-native crayfish as models to survive and construct vertical burrows in a humid sandy-clayey substrate under a simulated one-week drought. Three native species (Astacus astacus, A. leptodactylus, and Austropotamobius torrentium) suffered extensive mortalities. Survival of non-native species was substantially higher while all specimens of Cherax destructor and Procambarus clarkii survived. The native species and Pacifastacus leniusculus exhibited no ability to construct vertical burrows. Procambarus fallax f. virginalis and P. clarkii constructed bigger and deeper burrows than C. destructor and Orconectes limosus. In the context of predicted weather fluctuations, the ability to withstand desiccation through constructing vertical burrows into the hyporheic zone under drought conditions might play a significant role in the success of particular crayfish species, as well as a wide range of further hyporheic-dwelling aquatic organisms in general.
Zobrazit více v PubMed
Strayer D. L. & Dudgeon D. Freshwater biodiversity conservation: recent progress and future challenges. J. N. Am. Benthol. Soc. 29, 344–358 (2010).
Vörösmarty C. J. PubMed
Darwall W. R. T.
Ricciardi A. & Rasmussen J. B. Extinction rates of North American freshwater fauna. Conserv. Biol. 13, 1220–1222 (1999).
Clausnitzer V.
Cumberlidge N.
Füreder L. & Reynolds J. D. Is
Holdich D. M., Reynolds J. D., Souty-Grosset C. & Sibley P. J. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Manag. Aquat. Ec. 394–395, 11 (2009).
Souty-Grosset C.
Souty-Grosset C., Holdich D. M., Noël P. Y., Reynolds J. & Haffner P.
Chucholl C. Invaders for sale: trade and determinants of introduction of ornamental freshwater crayfish. Biol. Invasions 15, 125–141 (2013).
Patoka J., Kalous L. & Kopecký O. Risk assessment of the crayfish pet trade based on data from the Czech Republic. Biol. Invasions 16, 2489–2494 (2014).
Owen C. L., Bracken-Grissom H., Stern D. & Crandall K. A. A synthetic phylogeny of freshwater crayfish: insights for conservation. Philos. T. R. Soc. B 370, 20140009 (2015). PubMed PMC
Lodge D. M., Taylor C. A., Holdich D. M. & Skurdal J. Nonindigenous crayfishes threaten North American freshwater biodiversity: Lessons from Europe. Fisheries 25, 7–20 (2000).
Taylor C. A.
Magoulick D. Impacts of drought and crayfish invasion on stream ecosystem structure and function. River Res. Appl. 30, 1309–1317 (2014).
Rolls R. J., Leigh C. & Sheldon F. Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration. Freshwater Sci. 31, 1163–1186 (2012).
Bond N. R., Lake P. & Arthington A. H. The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia 600, 3–16 (2008).
Matthews W. J. & Marsh-Matthews E. Effects of drought on fish across axes of space, time and ecological complexity. Freshwater Biol. 48, 1232–1253 (2003).
Boulton A. J. & Lake P. S. Aquatic insects: challenges to populations (eds Lancaster J. & Briers R. A.) Ch. 5, 81–102 (CABI Publishing, 2008).
DiStefano R. J., Magoulick D. D., Imhoff E. M. & Larson E. R. Imperiled crayfishes use hyporheic zone during seasonal drying of an intermittent stream. J. N. Am. Benthol. Soc. 28, 142–152 (2009).
Larson E. R., Magoulick D. D., Turner C. & Laycock K. H. Disturbance and species displacement: different tolerances to stream drying and desiccation in a native and an invasive crayfish. Freshwater Biol. 54, 1899–1908 (2009).
Dorn N. J. & Volin J. C. Resistance of crayfish (
Underwood E. Models predict longer, deeper US droughts. Science 347, 707–707 (2015). PubMed
Sutton R. T. & Hodson D. L. Atlantic Ocean forcing of North American and European summer climate. Science 309, 115–118 (2005). PubMed
Poznańska M., Kakareko T., Gulanicz T., Jermacz Ł. & Kobak J. Life on the edge: survival and behavioural responses of freshwater gill‐breathing snails to declining water level and substratum drying. Freshwater Biol. 60, 2379–2391 (2015).
Collas F. P.
Banha F. & Anastácio P. Desiccation survival capacities of two invasive crayfish species. Knowl. Manag. Aquat. Ec. 413, 1 (2014).
McMahon B. Biology of Freshwater Crayfish (ed Holdich D. M.) Ch. 9, 327–376 (Blackwell Science, 2002).
Correia A. M. & Ferreira O. Burrowing behavior of the introduced red swamp crayfish
Peay S. & Dunn A. The behavioural response of the invasive signal crayfish
Holdich D. & Black J. The spiny-cheek crayfish,
Horwitz P. & Knott B. The distribution and spread of the yabby
Chucholl C. Population ecology of an alien “warm water” crayfish (
Dorn N. J. & Trexler J. C. Crayfish assemblage shifts in a large drought‐prone wetland: the roles of hydrology and competition. Freshwater Biol. 52, 2399–2411 (2007).
Kouba A., Petrusek A. & Kozák P. Continental-wide distribution of crayfish species in Europe: update and maps. Knowl. Manag. Aquat. Ec. 413, 5 (2014).
Horwitz P. & Richardson A. An ecological classification of the burrows of Australian freshwater crayfish. Mar. Freshwater Res. 37, 237–242 (1986).
Berrill M. & Chenoweth B. The burrowing ability of nonburrowing crayfish. Am. Midl. Nat. 108, 199–201 (1982).
Harvey G. L.
Barbaresi S. & Gherardi F. The invasion of the alien crayfish
Huner J. V., Barr J. & Coleman E. B. Red swamp crawfish: biology and exploitation. (Louisiana Sea Grant College Program, Center for Wetland Resources, Louisiana State University, 1984).
Pérez J.
Van Lanen H. DOI
Stoeckel J. A., Helms B. S. & Cash E. Evaluation of a crayfish burrowing chamber design with simulated groundwater flow. J. Crustacean Biol. 31, 50–58 (2011).
Veselý L., Buřič M. & Kouba A. Hardy exotics species in temperate zone: can “warm water” crayfish invaders establish regardless of low temperatures? Sci. Rep. 5, 16340 (2015). PubMed PMC
Souty-Grosset C.
Streissl F. & Hödl W. Habitat and shelter requirements of the stone crayfish,
Pârvulescu L., Pacioglu O. & Hamchevici C. The assessment of the habitat and water quality requirements of the stone crayfish (
Hobbs H. H. The crayfishes of Florida. (University of Florida under the auspices of the Committee on University Publications, 1942).
Larimore R. W., Childers W. F. & Heckrotte C. Destruction and re-establishment of stream fish and invertebrates affected by drought. T. Am. Fish. Soc. 88, 261–285 (1959).
Jones S. N. & Bergey E. A. Habitat segregation in stream crayfishes: implications for conservation. J. N. Am. Benthol. Soc. 26, 134–144 (2007).
Taylor R. C. Population dynamics of the crayfish
Dyer J. J., Worthington T. A. & Brewer S. K. Response of crayfish to hyporheic water availability and excess sedimentation. Hydrobiologia 747, 147–157 (2015).