Considerations for fatty acids in standardized reference diet for parthenogenetic marbled crayfish Procambarus virginalis model organism
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018099
Ministry of Education, Youth and Sports of the Czech Republic
19-04431S
Czech Science Foundation
PubMed
38987279
PubMed Central
PMC11237046
DOI
10.1038/s41598-024-66268-7
PII: 10.1038/s41598-024-66268-7
Knihovny.cz E-zdroje
- MeSH
- dieta * MeSH
- krmivo pro zvířata * analýza MeSH
- mastné kyseliny * metabolismus analýza MeSH
- partenogeneze MeSH
- severní raci * metabolismus růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mastné kyseliny * MeSH
Fatty acid accumulation was studied in the parthenogenetic all-female marbled crayfish Procambarus virginalis using six arbitrarily designed experimental feeds and related to individuals with glair glands (sexual maturity) after 100 days of ad libitum feeding at 21 °C, including gravid females from the wild as a reference. Fatty acids 16:0 and 18:1n-9 comprised 40% of the total amount of fatty acids and tended to up-concentrate in bodies. Shorter chain 14:0 depleted from feed to body. Across diets, there was a concomitant decrease in precursor fatty acid and increase in product fatty acid, such as reinforcements in monounsaturated fatty acid (18:1n-9), eicosanoid precursors 20:4n-6 (arachidonic acid, ARA) and 20:5n-3 (eicosapentaenoic acid, EPA) in-vivo, but not 22:6n-3 (docosahexaenoic acid, DHA) except when deficient in CHI or CHI + SPI diets. Saturation kinetics modeling (R2 0.7-0.9, p < 0.05) showed that when the ARA share is ~ 1%, the EPA share is ~ 8%, and the DHA share is ~ 2% in the food lipids, the accumulation of fatty acids in body lipids levels off. The lowest DHA in the CHI (0% glair glands) or CHI + SPI (0-3.9% glair glands) diets, and the lowest ARA in SER (0% glair glands) or SER + SPI (0-3% glair glands) diets, were synchronous with negligible sexual maturity despite a wide range of observed specific growth rates (2.77-3.60% per day), body size (0.44-0.84 g), ≤ 5% crude lipid and 40-46% crude protein feed. The FISH and SHRIMP diets (56% protein, 11-14% lipid) with the highest ARA, EPA, and DHA together seem to be the most conducive diets for sexual maturity (up to 20% of individuals with glair glands). We propose a fatty acid profile mimicking the FISH or SHRIMP diets as a starting point for designing the lipid content required in the marbled crayfish standardized reference diet.
Zobrazit více v PubMed
Watts SA, D'Abramo LR. Standardized reference diets for zebrafish: Addressing nutritional control in experimental methodology. Annu. Rev. Nutr. 2021;41:511–527. doi: 10.1146/annurev-nutr-120420-034809. PubMed DOI PMC
Watts SA, Powell M, D'Abramo LR. Fundamental approaches to the study of zebrafi sh nutrition. Ilar. J. 2012;53:144–160. doi: 10.1093/ilar.53.2.144. PubMed DOI PMC
Barnard DE, Lewis SM, Teter BB, Thigpen JE. Open- and closed-formula laboratory animal diets and their importance to research. J. Am. Assoc. Lab. Anim. 2009;48:709–713. PubMed PMC
Žák J, Roy K, Dykova I, Mraz J, Reichard M. Starter feed for carnivorous species as a practical replacement of bloodworms for a vertebrate model organism in ageing, the turquoise killifish Nothobranchius furzeri. J. Fish Biol. 2022;100:894–908. doi: 10.1111/jfb.15021. PubMed DOI
Das K, Roy K, Mráz J, Buřič M, Kouba A. Considerations for protein and amino acids in standardized reference diet for parthenogenetic marbled crayfish Procambarus virginalis model organism. Sci. Rep.-Uk. 2024 doi: 10.1038/s41598-024-58304-3. PubMed DOI PMC
Hossain MS, Patoka J, Kouba A, Buric M. Clonal crayfish as biological model: a review on marbled crayfish. Biologia. 2018;73:841–855. doi: 10.2478/s11756-018-0098-2. DOI
Vogt G. Marmorkrebs: Natural crayfish clone as emerging model for various biological disciplines. J. Biosci. 2011;36:377–382. doi: 10.1007/s12038-011-9070-9. PubMed DOI
Maiakovska O, et al. Genome analysis of the monoclonal marbled crayfish reveals genetic separation over a short evolutionary timescale. Commun. Biol. 2021;4:74. doi: 10.1038/s42003-020-01588-8. PubMed DOI PMC
Gutekunst J, et al. Phylogeographic reconstruction of the marbled crayfish origin. Commun. Biol. 2021;4:1096. doi: 10.1038/s42003-021-02609-w. PubMed DOI PMC
Kouba A, et al. The significance of droughts for hyporheic dwellers: Evidence from freshwater crayfish. Sci. Rep.-Uk. 2016;6:26569. doi: 10.1038/srep26569. PubMed DOI PMC
Vogt G, Tolley L. Brood care in freshwater crayfish and relationship with the offspring's sensory deficiencies. J. Morphol. 2004;262:566–582. doi: 10.1002/jmor.10169. PubMed DOI
Jimenez SA, Faulkes Z. Establishment and care of a colony of parthenogenetic marbled crayfish Marmorkrebs. Invertebr. Rear. 2010;1:10–18.
Velisek J, Stara A, Koutnik D, Zuskova E, Kouba A. Effect of prometryne on early life stages of marbled crayfish ( Procambarus fallax f. virginalis ) Neuroendocrinol Lett. 2014;35:93–98. PubMed
Campaña-Torres A, Martínez-Córdova LR, Villarreal-Colmenares H, Cortés-Jacinto E. Evaluation of different concentrations of adult live Artemia (Artemia franciscana, Kellogs 1906) as natural exogenous feed on the water quality and production parameters of Litopenaeus vannamei (Boone 1931) pre-grown intensively. Aquac. Res. 2010;42:40–46. doi: 10.1111/j.1365-2109.2010.02527.x. DOI
Kouba A, et al. Survival, growth, and reproduction: comparison of marbled crayfish with four prominent crayfish invaders. Biology. 2021;10:422. doi: 10.3390/biology10050422. PubMed DOI PMC
Tönges S, et al. Evaluating invasive marbled crayfish as a potential livestock for sustainable aquaculture. Front Ecol. Evol. 2021;9:651981. doi: 10.3389/fevo.2021.651981. DOI
Hossain MS, et al. A combination of six psychoactive pharmaceuticals at environmental concentrations alter the locomotory behavior of clonal marbled crayfish. Sci. Total Environ. 2021;751:141383. doi: 10.1016/j.scitotenv.2020.141383. PubMed DOI
Kubec J, et al. Oxazepam alters the behavior of crayfish at diluted concentrations, venlafaxine does not. Water. 2019;11:196. doi: 10.3390/w11020196. DOI
Sales J, Janssens GPJ. Nutrient requirements of ornamental fish. Aquat. Living Resour. 2003;16:533–540. doi: 10.1016/j.aquliv.2003.06.001. DOI
Penglase S, Moren M, Hamre K. Standardize the diet for zebrafish model. Nature. 2012;491:333–333. doi: 10.1038/491333a. PubMed DOI
Vogt G. Glair glands and spawning in unmated crayfish: A comparison between gonochoristic slough crayfish and parthenogenetic marbled crayfish. Invertebr. Zool. 2018;15:215–220. doi: 10.15298/invertzool.15.2.02. DOI
Ma QQ, et al. The metabolomics responses of Chinese mitten-hand crab (Eriocheir sinensis) to different dietary oils. Aquaculture. 2017;479:188–199. doi: 10.1016/j.aquaculture.2017.05.032. DOI
Tocher DR. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish Sci. 2003;11:107–184. doi: 10.1080/713610925. DOI
Méndez-Martínez Y, et al. Effects of different dietary protein-energy ratios on growth, carcass amino acid and fatty acid profile of male and female Cherax quadricarinatus (von Martens, 1868) pre-adults. Aquacult. Nutr. 2021;27:2481–2496. doi: 10.1111/anu.13379. DOI
Chen YF, et al. Effects of dietary fish oil replacement by soybean oil and L-carnitine supplementation on growth performance, fatty acid composition, lipid metabolism and liver health of juvenile largemouth bass Micropterus salmoides. Aquaculture. 2020;516:734596. doi: 10.1016/j.aquaculture.2019.734596. DOI
Chen CZ, et al. Growth and health status of Pacific white shrimp, Litopenaeus vannamei, exposed to chronic water born cobalt. Fish Shellfish Immun. 2020;100:137–145. doi: 10.1016/j.fsi.2020.03.011. PubMed DOI
Harrison KE. The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: a review. J. Shellfish Res. 1990;9:1–28.
Yamasaki-Granados S, et al. Contributions to the biology of molting and growth of the longarm river prawn Macrobrachium tenellum (Decapoda: Paleamonidae) in Mexico. Archiv. Biol. Sci. 2012;64:651–658. doi: 10.2298/ABS1202651G. DOI
Harlıoğlu MM, Farhadi A. Factors affecting the reproductive efficiency in crayfish: implications for aquaculture. Aquac. Res. 2017;48:1983–1997. doi: 10.1111/are.13263. DOI
Niksirat H, James P, Andersson L, Kouba A, Kozák P. Label-free protein quantification in freshly ejaculated versus post-mating spermatophores of the noble crayfish. J. Proteomics. 2015;123:70–77. doi: 10.1016/j.jprot.2015.04.004. PubMed DOI
Niksirat H, Andersson L, James P, Kouba A, Kozák P. Proteomic profiling of the signal crayfish Pacifastacus leniusculus egg and spermatophore. Anim. Reprod. Sci. 2014;149:335–344. doi: 10.1016/j.anireprosci.2014.07.024. PubMed DOI
Mengal K, et al. Quantification of proteomic profile changes in the hemolymph of crayfish during in vitro coagulation. Dev. Comp. Immunol. 2023;147:104760. doi: 10.1016/j.dci.2023.104760. PubMed DOI
Rodríguez-González H, et al. Gonadal development and biochemical composition of female crayfish Cherax quadricarinatus (Decapoda: Parastacidae) in relation to the Gonadosomatic Index at first maturation. Aquaculture. 2006;254:637–645. doi: 10.1016/j.aquaculture.2005.10.020. DOI
Li JY, Guo ZL, Gan XH, Wang Q, Zhao YL. Biochemical changes during vitellogenesis in the red claw crayfish, Cherax quadricarinatus (von Martens) Aquac. Res. 2010;41:e446–e455. doi: 10.1111/j.1365-2109.2010.02493.x. DOI
Izquierdo MS, Fernández-Palacios H, Tacon AGJ. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture. 2001;197:25–42. doi: 10.1016/S0044-8486(01)00581-6. DOI
D'ABRAMO, L. R. in Advances in Tropical Aquaculture, Workshop at Tahiti, French Polynesia, 20 Feb-4 Mar 1989.
Roy DR, et al. Fatty acid and energy (ATP-related compounds) metabolism of Eurasian perch (Perca fluviatilis) sperm: Endogenous metabolic strategy. Aquaculture. 2024;579:740183. doi: 10.1016/j.aquaculture.2023.740183. DOI
Heckmann LH, Sibly RM, Timmermans MJTN, Callaghan A. Outlining eicosanoid biosynthesis in the crustacean Daphnia. Front Zool. 2008;5:1–9. doi: 10.1186/1742-9994-5-11. PubMed DOI PMC
Funk CD. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science. 2001;294:1871–1875. doi: 10.1126/science.294.5548.1871. PubMed DOI
Spaziani EP, Hinsch GW, Edwards SC. Changes in prostaglandin E2 and F2α during vitellogenesis in the florida crayfish Procambarus paeninsulanus. J. Comp. Physiol. B. 1993;163:541–545. doi: 10.1007/Bf00302112. PubMed DOI
Ahmed S, Stanley D, Kim Y. An insect prostaglandin E2 synthase acts in immunity and reproduction. Front Physiol. 2018;9:408282. doi: 10.3389/fphys.2018.01231. PubMed DOI PMC
Wu DL, et al. Molecular cloning, tissue expression and regulation of nutrition and temperature on Δ6 fatty acyl desaturase-like gene in the red claw crayfish (Cherax quadricarinatus) Comp. Biochem. Phys. B. 2018;225:58–66. doi: 10.1016/j.cbpb.2018.07.003. PubMed DOI
Massucci Toledo, T. Effect of dietary lipid on the molecular and metabolic profile of a freshwater crayfish, Queensland University of Technology, (2019).
Monroig O, Shu-Chien AC, Kabeya N, Tocher DR, Castro LFC. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions. Prog. Lipid Res. 2022;86:101157. doi: 10.1016/j.plipres.2022.101157. PubMed DOI
Castro LFC, Tocher DR, Monroig O. Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. Prog. Lipid Res. 2016;62:25–40. doi: 10.1016/j.plipres.2016.01.001. PubMed DOI
Rangel BS, Hammerschlag N, Sulikowski JA, Moreira RG. Physiological markers suggest energetic and nutritional adjustments in male sharks linked to reproduction. Oecologia. 2021;196:989–1004. doi: 10.1007/s00442-021-04999-4. PubMed DOI
Furuita H, et al. Lipid and fatty acid composition of eggs producing larvae with high survival rate in the Japanese eel. J. Fish Biol. 2006;69:1178–1189. doi: 10.1111/j.1095-8649.2006.01196.x. DOI
Pickova J, Kiessling A, Pettersson A, Dutta PC. Fatty acid and carotenoid composition of eggs from two nonanadromous Atlantic salmon stocks of cultured and wild origin. Fish Physiol. Biochem. 1999;21:147–156. doi: 10.1023/A:1007860908911. DOI
Seitz R, Vilpoux K, Hopp U, Harzsch S, Maier G. Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J. Exp. Zool. Part A: Compar. Exp. Biol. 2005;303:393–405. doi: 10.1002/jez.a.143. PubMed DOI
Houten SM, Violante S, Ventura FV, Wanders RJA. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annual Rev. Physiol. 2016;78:23–44. doi: 10.1146/annurev-physiol-021115-105045. PubMed DOI
Wu DL, et al. Cloning and characterisation of a Δ9 fatty acyl desaturase-like gene from the red claw crayfish (Cherax quadricarinatus) and its expression analysis under cold stress. J. Therm. Biol. 2021 doi: 10.1016/j.jtherbio.2021.103122. PubMed DOI
Kumar V, et al. Metabolism and nutritive role of cholesterol in the growth, gonadal development, and reproduction of crustaceans. Rev. Fish. Sci. Aquac. 2018;26:254–273. doi: 10.1080/23308249.2018.1429384. DOI
Roy K, Das K, Petraskova E, Kouba A. Protein from whole-body crayfish homogenate may be a high supplier of leucine or branched-chain amino acids–A call for validation on genus Procambarus sp. Food Chem. 2023;427:136728. doi: 10.1016/j.foodchem.2023.136728. PubMed DOI
Lunda R, Roy K, Dvorak P, Kouba A, Mraz J. Recycling biofloc waste as novel protein source for crayfish with special reference to crayfish nutritional standards and growth trajectory. Sci. Rep.-Uk. 2020;10:19607. doi: 10.1038/s41598-020-76692-0. PubMed DOI PMC
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J. Boil. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI
Mráz J, Pickova J. Differences between lipid content and composition of different parts of fillets from crossbred farmed carp (Cyprinus carpio) Fish Physiol. Biochem. 2009;35:615–623. doi: 10.1007/s10695-008-9291-5. PubMed DOI
Hao RY, Pan JF, Tilami SK, Shah BR, Mráz J. Post-mortem quality changes of common carp (Cyprinus carpio) during chilled storage from two culture systems. J. Sci. Food Agr. 2021;101:91–100. doi: 10.1002/jsfa.10618. PubMed DOI
Hematyar N, Masilko J, Mraz J, Sampels S. Nutritional quality, oxidation, and sensory parameters in fillets of common carp (Cyprinus carpio L.) influenced by frozen storage (−20 °C) J. Food Process. Preserv. 2018;42:e13589. doi: 10.1111/jfpp.13589. DOI
Appelqvist L-Å. Rapid methods of lipid extraction and fatty acid methyl ester preparation for seed and leaf tissue with special remarks on preventing the accumulation of lipid contaminants. Arkiv för kemi. 1968;28:551–570.
Scharnweber K, Chaguaceda F, Eklöv P. Fatty acid accumulation in feeding types of a natural freshwater fish population. Oecologia. 2021;196:53–63. doi: 10.1007/s00442-021-04913-y. PubMed DOI PMC