Starter feed for carnivorous species as a practical replacement of bloodworms for a vertebrate model organism in ageing, the turquoise killifish Nothobranchius furzeri

. 2022 Apr ; 100 (4) : 894-908. [epub] 20220321

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35195903

Grantová podpora
19-01781S Grantová Agentura České Republiky
30121 Grantová Agentura, Univerzita Karlova
CENAKVA LM2018099 Ministerstvo Školství, Mládeže a Tělovýchovy
Biodiversity CZ.02.1.01/0.0/0.0/16_025/0007370 Ministerstvo Školství, Mládeže a Tělovýchovy

The absence of a controlled diet is unfortunate in a promising model organism for ageing, the turquoise killifish (Nothobranchius furzeri Jubb, 1971). Currently captive N. furzeri are fed bloodworms but it is not known whether this is an optimal diet. Replacing bloodworms with a practical dry feed would reduce diet variability. In the present study, we estimated the nutritional value of the diet ingested by wild fish and determined the fish-body amino acid profile as a proxy for their nutritional requirements. We compared the performance of fish fed four commercial feeds containing 46%-64% protein to that achieved with bloodworms and that of wild fish. Wild fish target a high-protein (60%) diet and this is supported by their superior performance on high-protein diets in captivity. In contrast, feeds for omnivores led to slower growth, lower fecundity and unnatural liver size. In comparison to wild fish, a bloodworm diet led to lower body condition, overfeeding and male liver enlargement. Out of the four dry feeds tested, the fish fed Aller matched wild fish in body condition and liver size, and was comparable to bloodworms in terms of growth and fecundity. A starter feed for carnivorous species appears to be a practical replacement for bloodworms for N. furzeri. The use of dry feeds improved performance in comparison to bloodworms and thus may contribute to reducing response variability and improving research reproducibility in N. furzeri research.

Zobrazit více v PubMed

Akiyama, T., Oohara, I., & Yamamoto, T. (1997). Comparison of essential amino acid requirements with A/E ratio among fish species (review paper). Fisheries Science, 63, 963-970.

Armitage, P. D. (1995). Chironomidae as food. In P. D. Armitage, P. S. Cranston, & L. C. V. Pinder (Eds.), The Chironomidae (pp. 423-435). Dordrecht: Springer.

Barnard, D. E., Lewis, S. M., Teter, B. B., & Thigpen, J. E. (2009). Open- and closed-formula laboratory animal diets and their importance to research. Journal of the American Association for Laboratory Animal Science, 48, 709-713.

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using {lme4}. Journal of Statistical Software, 67, 1-48.

Baumgart, M., Di Cicco, E., Rossi, G., & Cellerino, A. (2015). Comparison of captive lifespan, age-associated liver neoplasias and age-dependent gene expression between two annual fish species: Nothobranchius furzeri and Nothobranchius korthause. Biogerontology, 16, 63-69.

Bentley, K. T., & Schindler, D. E. (2013). Body condition correlates with instantaneous growth in stream-dwelling rainbow trout and arctic grayling. Transactions of the American Fisheries Society, 142, 747-755.

Blažek, R., Polačik, M., & Reichard, M. (2013). Rapid growth, early maturation and short generation time in African annual fishes. EvoDevo, 4.

Blažek, R., Polačik, M., Kačer, P., Cellerino, A., Řežucha, R., Methling, C., … Reichard, M. (2017). Repeated intraspecific divergence in life span and aging of African annual fishes along an aridity gradient. Evolution, 71, 386-402.

Butts, I. A. E., Hilmarsdóttir, G. S., Zadmajid, V., Gallego, V., Støttrup, J. G., Jacobsen, C., … Tomkiewicz, J. (2020). Dietary amino acids impact sperm performance traits for a catadromous fish, Anguilla Anguilla reared in captivity. Aquaculture, 518, 734602.

Cellerino, A., Valenzano, D. R., & Reichard, M. (2016). From the bush to the bench: The annual Nothobranchius fishes as a new model system in biology. Biological Reviews, 91, 511-533.

Chellappa, S., Huntingford, F. A., Strang, R. H. C., & Thomson, R. Y. (1995). Condition factor and hepatosomatic index as estimates of energy status in male three-spined stickleback. Journal of Fish Biology, 47, 775-787.

Cheng, K. C. (2008). Skin color in fish and humans: Impacts on science and society. Zebrafish, 5, 237-242.

Cho, C. Y. (1992). Feeding systems for rainbow trout and other salmonids with reference to current estimates of energy and protein requirements. Aquaculture, 100, 107-123.

Di Cicco, E., Terzibasi Tozzini, E., Rossi, G., & Cellerino, A. (2011). The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Experimental Gerontology, 46, 249-256.

Dabrowski, K., & Guderley, H. (2003). Intermediary metabolism. In J. E. Halver & R. W. Hardy (Eds.), Fish nutrition (pp. 309-365). Amsterdam, The Netherlands: Academic Press/Elsevier.

Dabrowski, K. R. (1986). Ontogenetical aspects of nutritional requirements in fish. Comparative Biochemistry and Physiology - Part A: Physiology, 85, 639-655.

Dodzian, J., Kean, S., Seidel, J., & Valenzano, D. R. (2018). A protocol for laboratory housing of turquoise killifish (Nothobranchius furzeri). Journal of Visualized Experiments, 134, e57073.

Evans, D. H. (1998). In D. H. Evans (Ed.), The physiology of fishes (2nd ed.). Boca Raton, FL: CRC Press.

Ferguson, H. W. (2006). In H. W. Ferguson (Ed.), Systemic pathology of fish: A text and atlas of normal tissues in teleosts and their responses in disease (2nd ed.). London, England: Scotian Press.

Fowler, L. A., Williams, M. B., Dennis-Cornelius, L. N., Farmer, S., Barry, R. J., Powell, M. L., & Watts, S. A. (2019). Influence of commercial and laboratory diets on growth, body composition, and reproduction in the zebrafish Danio rerio. Zebrafish, 16, 508-521.

Fox, J., & Weisberg, S. (2019). An R companion to applied regression (3rd ed.). Thousand Oak, CA: Sage Publications.

Genade, T., Benedetti, M., Terzibasi Tozzini, E., Roncaglia, P., Valenzano, D. R., Cattaneo, A., & Cellerino, A. (2005). Annual fishes of the genus Nothobarnchius as a model system for aging research. Aging Cell, 4, 223-233.

Harel, I., & Brunet, A. (2016). The African turquoise killifish: A model for exploring vertebrate aging and diseases in the fast lane. Cold Spring Harbor Symposia on Quantitative Biology, 80, 275-279.

Hedrera, M. I., Galdames, J. A., Jimenez-Reyes, M. F., Reyes, A. E., Avendaño-Herrera, R., Romero, J., & Feijóo, C. G. (2013). Soybean meal induces intestinal inflammation in zebrafish larvae. PLoS One, 8, e69983.

Heger, J., & Frydrych, Z. (2019). Efficiency of utilization of amino acids. In M. Friedman (Ed.), Absorption and utilization of amino acids (pp. 31-56). Boca Raton, FL: CRC Press.

Heikkinen, J., Vielma, J., Kemiläinen, O., Tiirola, M., Eskelinen, P., Kiuru, T., … von Wright, A. (2006). Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture, 261, 259-268.

Hemre, G. I., Mommsen, T. P., & Krogdahl, A. (2002). Carbohydrates in fish nutrition: Effects on growth, glucose metabolism and hepatic enzymes. Aquaculture Nutrition, 8, 175-194.

Hu, C. K., & Brunet, A. (2018). The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell, 17, e12757.

Hua, K., & Bureau, D. P. (2010). Quantification of differences in digestibility of phosphorus among cyprinids, cichlids, and salmonids through a mathematical modelling approach. Aquaculture, 308, 152-158.

Jobling, M. (2016). Fish nutrition research: Past, present and future. Aquaculture International, 24, 767-786.

Jungheim, E. S., MacOnes, G. A., Odem, R. R., Patterson, B. W., & Moley, K. H. (2011). Elevated serum alpha-linolenic acid levels are associated with decreased chance of pregnancy after in vitro fertilization. Fertility and Sterility, 96, 880-883.

Kaushik, S. J., & Seiliez, I. (2010). Protein and amino acid nutrition and metabolism in fish: Current knowledge and future needs. Aquaculture Research, 41, 322-332.

Lahnsteiner, F. (2009). The role of free amino acids in semen of rainbow trout Oncorhynchus mykiss and carp Cyprinus carpio. Journal of Fish Biology, 75, 816-833.

Lall, S. P., & Lewis-McCrea, L. M. (2007). Role of nutrients in skeletal metabolism and pathology in fish - An overview. Aquaculture, 267, 3-19.

Lawrence, C., Ennis, D. G., Harper, C., Kent, M. L., Murray, K., & Sanders, G. E. (2012). The challenges of implementing pathogen control strategies for fishes used in biomedical research. Comparative Biochemistry and Physiology, Part C, 155, 160-166.

Lenth, R. V. (2021). emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.4.

Ljubobratović, U., Péter, G., Demény, F., Kugyela, N., Horváth, Á., Pataki, B., … Rónyai, A. (2020). Reproductive performance in virgin pikeperch (Sander lucioperca L.) females fed different dietary levels of arachidonic acid with respect to the duration of spawning induction. Aquaculture Reports, 18, 100430.

Lugert, V., Thaller, G., Tetens, J., Schulz, C., & Krieter, J. (2016). A review on fish growth calculation: Multiple functions in fish production and their specific application. Reviews in Aquaculture, 8, 30-42.

Mandal, S. C., Kohli, M. P. S., Das, P., Singh, S. K., Munilkumar, S., Sarma, K., & Baruah, K. (2012). Effect of substituting live feed with formulated feed on the reproductive performance and fry survival of Siamese fighting fish, Betta splendens (Regan, 1910). Fish Physiology and Biochemistry, 38, 573-584.

Marei, W. F., Wathes, D. C., & Fouladi-Nashta, A. A. (2010). Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction, 139, 979-988.

Markovich, M. L., Rizzuto, N. V., & Brown, P. B. (2007). Diet affects spawning in zebrafish. Zebrafish, 4, 69-74.

Marono, S., Piccolo, G., Loponte, R., Meo, C. D., Attia, Y. A., Nizza, A., & Bovera, F. (2015). In vitro crude protein digestibility of tenebrio molitor and hermetia illucens insect meals and its correlation with chemical composition traits. Italian Journal of Animal Science, 14, 338-343.

McDonald, J. H. (2014). Handbook of biological statistics (3rd ed.). Baltimore, MD: Sparky House Publishing.

McKay, A., Hu, C. K., Chen, S., Bedbrook, C. N., Thielvoldt, M., Wyss-Coray, T. & Brunnet, A. (2021). An automated feeding system for the African killifish reveals effects of dietary restriction on lifespan and allows scalable assessment of associative learning. bioarXiv. https://doi.org/10.1101/2021.03.30.437790

van der Meer, M. B., & Verdegem, M. C. J. (1996). Comparison of amino acid profiies of feeds and fish as a quicic metiiod for selection of feed ingredients: A case study for Colossoma mactopomum (Cuvier). Aquaculture Research, 27, 487-495.

Meinelt, T., Schulz, C., Wirth, M., Kurzinger, H., & Steinberg, C. (1999). Dietary fatty acid composition influences the fertilization rate of zebrafish (Danio rerio Hamilton-Buchanan). Journal of Applied Ichthyology, 15, 19-23.

Moro, J., Tome, D., Schmidely, P., Demersay, T. C., & Azzout-Marniche, D. (2020). Histidine: A systematic review on metabolism and physiologcal effects in human and different animal species. Nutrients, 12, 1414.

Mráz, J., & Pickova, J. (2009). Differences between lipid content and composition of different parts of fillets from crossbred farmed carp (Cyprinus carpio). Fish Physiology and Biochemistry, 35, 615-623.

Muck, J., Kean, S., & Valenzano, D. R. (2018). The short-lived African turquoise killifish (Nothobranchius furzeri): A new model system for research on aging fish models of aging. 2nd ed.: Elsevier Inc.

NRC. (1977). Nutrient requirements of warmwater fishes. Washington, DC: National Academy of Sciences.

Nüsslein-Volhard, C., & Singh, A. P. (2017). How fish color their skin: A paradigm for development and evolution of adult patterns: Multipotency, plasticity, and cell competition regulate proliferation and spreading of pigment cells in zebrafish coloration. BioEssays, 39, 1-11.

Parker, G. (1992). The evolution of sexual size dimorphism in fish. Journal of Fish Biology, 41, 1-20.

Philippe, C., Gregoir, A. F., Thoré, E. S. J., de Boeck, G., Brendonck, L., & Pinceel, T. (2018). Protocol for acute and chronic ecotoxicity testing of the turquoise killifish Nothobranchius furzeri. Journal of Visualized Experiments, 134, e57308.

Polačik, M., & Reichard, M. (2010). Diet overlap among three sympatric African annual killifish species Nothobranchius spp. from Mozambique. Journal of Fish Biology, 77, 754-768.

Polačik, M., Blažek, R., Řežucha, R., Vrtílek, M., Terzibasi Tozzini, E., & Reichard, M. (2014). Alternative intrapopulation life-history strategies and their trade-offs in an African annual fish. Journal of Evolutionary Biology, 27, 854-865.

Polačik, M., Blažek, R., & Reichard, M. (2016). Laboratory breeding of the short-lived annual killifish Nothobranchius furzeri. Nature Protocols, 11, 1396-1413.

R Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Raubenheimer, D., & Simpson, S. J. (2019). Protein leverage: Theoretical foundations and ten points of clarification. Obesity, 27, 1225-1238.

Reeves, P. G., Nielsen, F. H., & Fahey, G. C. (1993). AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Journal of Nutrition, 123, 1939-1951.

Reichard, M., & Polačik, M. (2019). Nothobranchius furzeri, an ‘instant’ fish from an ephemeral habitat. eLife, 8, 1-11.

Reichard, M., Blažek, R., Dyková, I., Žák, J., & Polačik, M. (2022). Challenges in keeping annual killifis’. In L. D'Angelo & P. de Girolamo (Eds.), Laboratory fish in biomedical research: Biology, husbandry, and research applications for Zebrafish, Medaka, Platyfish, killifish, cavefish, stickleback, goldfish and Danionella translucida (p. 289). London, UK: Academic Press (Elsevier).

Riddle, M. R., & Hu, C. K. (2021). Fish models for investigating nutritional regulation of embryonic development. Developmental Biology, 476, 101-111.

Rollin, X., Mambrini, M., Abboudi, T., Larondelle, Y., & Kaushik, S. J. (2003). The optimum dietary indispensable amino acid pattern for growing Atlantic salmon (Salmo salar L.) fry. British Journal of Nutrition, 90, 865-876.

Ruohonen, K., Simpson, S. J., & Raubenheimer, D. (2007). A new approach to diet optimisation: A re-analysis using European whitefish (Coregonus lavaretus). Aquaculture, 267, 147-156.

Salamanca, N., Giráldez, I., Morales, E., de La Rosa, I., & Herrera, M. (2021). Phenylalanine and tyrosine as feed additives for reducing stress and enhancing welfare in gilthead seabream and meagre. Animals, 11, 45.

Smith, D. L., Barry, R. J., Powell, M. L., Nagy, T. R., D'Abramo, L. R., & Watts, S. A. (2013). Dietary protein source influence on body size and composition in growing zebrafish. Zebrafish, 10, 439-446.

Snellgrove, D. L., Alexander, L. G., Centre, W., Lane, F., Mowbray, M., & Le, L. (2011). Whole-body amino acid composition of adult fancy ranchu goldfish (Carassius auratus). British Journal of Nutrition, 106, 110-112.

Spitsbergen, J. M., Buhler, D. R., & Peterson, T. S. (2012). Neoplasia and neoplasm-associated lesions in laboratory colonies of zebrafish emphasizing key influences of diet and aquaculture system design. ILAR Journal, 53, 114-125.

Stephens, D. W., & Krebs, J. R. (1971). Foraging theory. Princeton, NJ: Princeton University Press.

Surai, P. F., Noble, R. C., Sparks, N. H. C., & Speake, B. K. (2000). Effect of long-term supplementation with arachidonic or docosahexaenoic acids on sperm production in the broiler chicken. Journal of Reproduction and Fertility, 120, 257-264.

Tacon, A. G. J., & Cowey, C. B. (1985). Protein and amino acid requirements. In P. Tytler (Ed.), Fish energetics (pp. 155-183). Sydney, Australia: Croom Helm.

Terzibasi Tozzini, E., Lefrançois, C., Domenici, P., Hartmann, N., Graf, M., & Cellerino, A. (2009). Effects of dietary restriction on mortality and age-related phenotypes in the short-lived fish Nothobranchius furzeri. Aging Cell, 8, 88-99.

Therneau, T. M., & Grambsch, P. M. (2000). Modeling survival data: Extending the cox model. New York, NY: Springer.

Tozzini, E. T., & Cellerino, A. (2020). Nothobranchius annual killifishes. EvoDevo, 11, 25.

Trivers, R. L. L. (1972). Parental investment and sexual selection. In B. Grant Campbell (Ed.), Sexual selection and the descent of man (pp. 136-179). Chickago: Aldine Publishing Company.

Turchini, G. M., Trushenski, J. T., & Glencross, B. D. (2019). Thoughts for the future of aquaculture nutrition: Realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. North American Journal of Aquaculture, 81, 13-39.

Verstraete, F. (2013). Risk management of undesirable substances in feed following updated risk assessments. Toxicology and Applied Pharmacology, 270, 230-247.

Vrtílek, M., & Reichard, M. (2015). Highly plastic resource allocation to growth and reproduction in females of an African annual fish. Ecology of Freshwater Fish, 24, 616-628.

Vrtílek, M., & Reichard, M. (2016). Female fecundity traits in wild populations of African annual fish: The role of the aridity gradient. Ecology and Evolution, 6, 5921-5931.

Vrtílek, M., Žák, J., Blažek, R., Polačik, M., Cellerino, A., & Reichard, M. (2018). Limited scope for reproductive senescence in wild populations of a short-lived fish. The Science of Nature, 105.

Vrtílek, M., Žák, J., Polačik, M., Blažek, R., & Reichard, M. (2019). Rapid growth and large body size in annual fish populations are compromised by density-dependent regulation. Journal of Fish Biology, 95, 673-679.

Ward, A. J. W., Webster, M. M., & Hart, P. J. B. (2006). Intraspecific food competition in fishes. Fish and Fisheries, 7, 231-261.

Watts, S. A., Lawrence, C., Powell, M., & Abramo, L. R. D. (2016). The vital relationship between nutrition and health in Zebrafish. Zebrafish, 13, 72-76.

Watts, S. A., Powel, M., & D'Abramo, L. R. (2012). Fundamental approaches to the study of zebrafish nutrition. ILAR Journal, 53, 144-160.

Watts, A., & D'Abramo, L. R. (2021). Standardized reference diets for zebrafish: Addressing nutritional control in experimental metIogy. Anual Review of Nutrition, 41, 1-17.

Wheeler, B., & Torchiano, M. (2016). lmPerm: Permutation Tests for Linear Models. R package version 2.1.0.

Williams, M. B., & Watts, S. A. (2019). Current basis and future directions of zebrafish nutrigenomics. Genes and Nutrition, 14, 1-10.

Wolf, J. C., & Wolfe, M. J. (2005). A brief overview of nonneoplastic hepatic toxicity in fish. Toxicologic Pathology, 33, 75-85.

Wood, S. N. (2017). Generalized additive models: An introduction with R. New York, NY: Chapman and Hall/CRC.

Wu, G., Bazer, F. W., Burghardt, R. C., Johnson, G. A., Kim, S. W., Knabe, D. A., … Spencer, T. E. (2011). Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino Acids, 40, 1053-1063.

Yamada, S., Kawashima, K., Baba, K., Oku, T., & Ando, S. (2009). Occurrence of a novel acetylated amino acid, Nα-acetylhistidine, in skeletal muscle of freshwater fish and other ectothermic vertebrates. Comparative Biochemistr- and Physiology - B Biochemistry and Molecular Biology, 152, 282-286.

Žák, J., Vrtílek, M., & Reichard, M. (2019). Diel schedules of locomotor, reproductive and feeding activity in wild populations of African annual killifish. Biological Journal of the Linnean Society, 182, 435-450.

Žák, J., Dyková, I., & Reichard, M. (2020). Good performance of turquoise killifish (Nothobranchius furzeri), on pelleted diet as a step towards husbandry standardization. Scientific Reports, 10, 8986.

Zandona, E., Auer, S. K., Kilham, S. S., & Reznick, D. N. (2015). Contrasting population and diet influences on gut length of an omnivorous tropical fish, the trinidadian guppy (Poecilia reticulata). PLoS One, 10, 0136079.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...