• This record comes from PubMed

Horsing around: Escherichia coli ST1250 of equine origin harbouring epidemic IncHI1/ST9 plasmid with bla CTX-M-1 and an operon for short-chain fructooligosaccharides metabolism

. 2023 May 01 ; 65 (5) : . [epub] 20210222

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

The relatedness of the equine-associated Escherichia coli ST1250 and its single- and double-locus variants (ST1250-SLV/DLV), obtained from horses in Europe, was studied by comparative genome analysis. A total of 54 isolates of E. coli ST1250 and ST1250-SLV/DLV from healthy and hospitalized horses across Europe [Czech Republic (n=23), the Netherlands (n=18), Germany (n=9), Denmark (n=3) and France (n=1)] from 2008-2017 were subjected to whole-genome sequencing. An additional 25 draft genome assemblies of E. coli ST1250 and ST1250-SLV/DLV were obtained from the public databases. The isolates were compared for genomic features, virulence genes, clade structure and plasmid content. The complete nucleotide sequences of eight IncHI1/ST9 and one IncHI1/ST2 plasmids were obtained using long-read sequencing by PacBio or MinION. In the collection of 79 isolates, only 10 were phylogenetically close (<8 SNP). The majority of isolates belonged to phylogroup B1 (73/79, 92.4%) and carried bla CTX-M-1 (58/79, 73.4%). The plasmid content of the isolates was dominated by IncHI1 of ST9 (56/62, 90.3%) and ST2 (6/62, 9.7%), while 84.5% (49/58) bla CTX-M-1 genes were associated with presence of IncHI1 replicon of ST9 and 6.9% (4/58) with IncHI1 replicon of ST2 within the corresponding isolates. The operon for the utilization of short chain fructooligosaccharides (fos operon) was present in 55 (55/79, 69.6%) isolates, and all of these carried IncHI1/ST9 plasmids. The eight complete IncHI1/ST9 plasmid sequences showed the presence of bla CTX-M-1 and the fos operon within the same molecule. Sequences of IncHI1/ST9 plasmids were highly conserved (>98% similarity) regardless of country of origin and varied only in the structure and integration site of MDR region. E. coli ST1250 and ST1250-SLV/DLV are phylogenetically-diverse strains associated with horses. A strong linkage of E. coli ST1250 with epidemic multi-drug resistance plasmid lineage IncHI1/ST9 carrying bla CTX-M-1 and the fos operon was identified.

See more in PubMed

Ewers C, Bethe A, Semmler T, Guenther S, Wieler LH. 2012. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol Infect 18:646–655. 10.1111/j.1469-0691.2012.03850.x. PubMed DOI

El Salabi A, Walsh TR, Chouchani C. 2013. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria. Crit Rev Microbiol 39:113–122. 10.3109/1040841X.2012.691870. PubMed DOI

McNulty C, Lecky DM, Xu-McCrae L, Nakiboneka-Ssenabulya D, Chung KT, Nichols T, Thomas HL, Thomas M, Alvarez-Buylla A, Turner K, Shabir S, Manzoor S, Smith S, Crocker L, Hawkey PM. 2018. CTX-M ESBL-producing Enterobacteriaceae: estimated prevalence in adults in England in 2014. J Antimicrob Chemother 73:1368–1388. 10.1093/jac/dky007. PubMed DOI PMC

Teklu DS, Negeri AA, Legese MH, Bedada TL, Woldemariam HK, Tullu KD. 2019. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob Resist Infect Control 8:39. 10.1186/s13756-019-0488-4. PubMed DOI PMC

Dolejska M, Duskova E, Rybarikova J, Janoszowska D, Roubalova E, Dibdakova K, Maceckova G, Kohoutova L, Literak I, Smola J, Cizek A. 2011. Plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J Antimicrob Chemother 66:757–764. 10.1093/jac/dkq500. PubMed DOI

Dolejska M, Villa L, Minoia M, Guardabassi L, Carattoli A. 2014. Complete sequences of IncHI1 plasmids carrying blaCTX-M-1 and qnrS1 in equine Escherichia coli provide new insights into plasmid evolution. J Antimicrob Chemother 69:2388–2393. 10.1093/jac/dku172. PubMed DOI

Damborg P, Marskar P, Baptiste KE, Guardabassi L. 2012. Faecal shedding of CTX-M-producing Escherichia coli in horses receiving broad-spectrum antimicrobial prophylaxis after hospital admission. Vet Microbiol 154:298–304. 10.1016/j.vetmic.2011.07.005. PubMed DOI

Jakobsen L, Bortolaia V, Bielak E, Moodley A, Olsen SS, Hansen DS, Frimodt-Møller N, Guardabassi L, Hasman H. 2015. Limited similarity between plasmids encoding CTX-M-1 β-lactamase in Escherichia coli from humans, pigs, cattle, organic poultry layers and horses in Denmark. J Glob Antimicrob Resist 3:132–136. 10.1016/j.jgar.2015.03.009. PubMed DOI

Apostolakos I, Franz E, van Hoek AHAM, Florijn A, Veenman C, Sloet-van Oldruitenborgh-Oosterbaan MM, Dierikx C, van Duijkeren E. 2017. Occurrence and molecular characteristics of ESBL/AmpC-producing Escherichia coli in faecal samples from horses in an equine clinic. J Antimicrob Chemother 72:1915–1921. 10.1093/jac/dkx072. PubMed DOI

Hordijk J, Farmakioti E, Smit LAM, Duim B, Graveland H, Theelen MJP, Wagenaar JA. 2020. Fecal carriage of extended-spectrum-β-lactamase/AmpC-producing Escherichia coli in horses. Appl Environ Microbiol 86:e02590-19. 10.1128/aem.02590-19. PubMed DOI PMC

Isgren CM, Edwards T, Pinchbeck GL, Winward E, Adams ER, Norton P, Timofte D, Maddox TW, Clegg PD, Williams NJ. 2019. Emergence of carriage of CTX-M-15 in faecal Escherichia coli in horses at an equine hospital in the UK; increasing prevalence over a decade (2008–2017). BMC Vet Res 15:268. 10.1186/s12917-019-2011-9. PubMed DOI PMC

Ewers C, Bethe A, Stamm I, Grobbel M, Kopp PA, Guerra B, Stubbe M, Doi Y, Zong Z, Kola A, Schaufler K, Semmler T, Fruth A, Wieler LH, Guenther S. 2014. CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: another pandemic clone combining multiresistance and extraintestinal virulence? J Antimicrob Chemother 69:1224–1230. 10.1093/jac/dkt516. PubMed DOI

Kaspar U, von Lützau K, Schlattmann A, Rösler U, Köck R, Becker K. 2019. Zoonotic multidrug-resistant microorganisms among non-hospitalized horses from Germany. One Health 7:100091. 10.1016/j.onehlt.2019.100091. PubMed DOI PMC

Lupo A, Haenni M, Saras E, Gradin J, Madec JY, Börjesson S. 2018. Is blaCTX-M-1 riding the same plasmid among horses in Sweden and France? Microb Drug Resist 24:1580–1586. 10.1089/mdr.2017.0412. PubMed DOI

Sadikalay S, Reynaud Y, Guyomard-Rabenirina S, Falord M, Ducat C, Fabre L, Le Hello S, Talarmin A, Ferdinand S. 2018. High genetic diversity of extended-spectrum β-lactamases producing Escherichia coli in feces of horses. Vet Microbiol 219:117–122. 10.1016/j.vetmic.2018.04.016. PubMed DOI

de Lagarde M, Larrieu C, Praud K, Lallier N, Trotereau A, Sallé G, Fairbrother JM, Schouler C, Doublet B. 2020. Spread of multidrug resistance IncHI1 plasmids carrying ESBL gene blaCTX-M-1 and metabolism operon of prebiotic oligosaccharides in commensal Escherichia coli from healthy horses, France. Int J Antimicrob Agents 55:105936. 10.1016/j.ijantimicag.2020.105936. PubMed DOI

Schouler C, Taki A, Chouikha I, Moulin-Schouleur M, Gilot P. 2009. A genomic island of an extraintestinal pathogenic Escherichia coli strain enables the metabolism of fructooligosaccharides, which improves intestinal colonization. J Bacteriol 191:388–393. 10.1128/JB.01052-08. PubMed DOI PMC

Respondek F, Myers K, Smith TL, Wagner A, Geor RJ. 2011. Dietary supplementation with short-chain fructo-oligosaccharides improves insulin sensitivity in obese horses. J Anim Sci 89:77–83. 10.2527/jas.2010-3108. PubMed DOI

Sonnenborn U, Schulze J. 2009. The non-pathogenic Escherichia coli strain Nissle 1917 — features of a versatile probiotic. Microb Ecol Health Dis 21:122–158. 10.3109/08910600903444267. DOI

Qi B, Han M. 2018. Microbial siderophore enterobactin promotes mitochondrial iron uptake and development of the host via interaction with ATP synthase. Cell 175:571–582.e11. 10.1016/j.cell.2018.07.032. PubMed DOI

Girón JA, Torres AG, Freer E, Kaper JB. 2002. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 44:361–379. 10.1046/j.1365-2958.2002.02899.x. PubMed DOI

Qin X, Hu F, Wu S, Ye X, Zhu D, Zhang Y, Wang M. 2013. Comparison of adhesin genes and antimicrobial susceptibilities between uropathogenic and intestinal commensal Escherichia coli strains. PLoS One 8:e61169. 10.1371/journal.pone.0061169. PubMed DOI PMC

Talmi-Frank D, Altboum Z, Solomonov I, Udi Y, Jaitin DA, Klepfish M, David E, Zhuravlev A, Keren-Shaul H, Winter DR, Gat-Viks I, Mandelboim M, Ziv T, Amit I, Sagi I. 2016. Extracellular matrix proteolysis by MT1-MMP contributes to influenza-related tissue damage and mortality. Cell Host Microbe 20:458–470. 10.1016/j.chom.2016.09.005. PubMed DOI

Francetic O, Pugsley AP. 1996. The cryptic general secretory pathway (gsp) operon of Escherichia coli K-12 encodes functional proteins. J Bacteriol 178:3544–3549. 10.1128/jb.178.12.3544-3549.1996. PubMed DOI PMC

Francetic O, Belin D, Badaut C, Pugsley AP. 2000. Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion. EMBO J 19:6697–6703. 10.1093/emboj/19.24.6697. PubMed DOI PMC

Bébien M, Kirsch J, Méjean V, Verméglio A. 2002. Involvement of a putative molybdenum enzyme in the reduction of selenate by Escherichia coli. Microbiology (Reading) 148:3865–3872. 10.1099/00221287-148-12-3865. PubMed DOI

Minazzato G, Gasparrini M, Amici A, Cianci M, Mazzola F, Orsomando G, Sorci L, Raffaelli N. 2020. Functional characterization of COG1713 (YqeK) as a novel diadenosine tetraphosphate hydrolase family. J Bacteriol 202:e00053-20. 10.1128/jb.00053-20. PubMed DOI PMC

Frederix M, Hütter K, Leu J, Batth TS, Turner WJ, Rüegg TL, Blanch HW, Simmons BA, Adams PD, Keasling JD, Thelen MP, Dunlop MJ, Petzold CJ, Mukhopadhyay A. 2014. Development of a native Escherichia coli induction system for ionic liquid tolerance. PLoS One 9:e101115. 10.1371/journal.pone.0101115. PubMed DOI PMC

Jenkins LS, Nunn WD. 1987. Regulation of the ato operon by the atoC gene in Escherichia coli. J Bacteriol 169:2096–2102. 10.1128/jb.169.5.2096-2102.1987. PubMed DOI PMC

Seeger C, Poulsen C, Dandanell G. 1995. Identification and characterization of genes (xapA, xapB, and xapR) involved in xanthosine catabolism in Escherichia coli. J Bacteriol 177:5506–5516. 10.1128/jb.177.19.5506-5516.1995. PubMed DOI PMC

Koga M, Otsuka Y, Lemire S, Yonesaki T. 2011. Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system. Genetics 187:123–130. 10.1534/genetics.110.121798. PubMed DOI PMC

Cain AK, Hall RM. 2013. Evolution of IncHI1 plasmids: two distinct lineages. Plasmid 70:201–208. 10.1016/j.plasmid.2013.03.005. PubMed DOI

Smith H, Bossers A, Harders F, Wu G, Woodford N, Schwarz S, Guerra B, Rodríguez I, van Essen-Zandbergen A, Brouwer M, Mevius D. 2015. Characterization of epidemic IncI1-Iγ plasmids harboring Ambler class A and C genes in Escherichia coli and Salmonella enterica from animals and humans. Antimicrob Agents Chemother 59:5357–5365. 10.1128/AAC.05006-14. PubMed DOI PMC

Wang Y, Tong MK, Chow KH, Cheng VCC, Tse CWS, Wu AKL, Lai RWM, Luk WK, Tsang DNC, Ho PL. 2018. Occurrence of highly conjugative IncX3 epidemic plasmid carrying blaNDM in Enterobacteriaceae isolates in geographically widespread areas. Front Microbiol 9:2272. 10.3389/fmicb.2018.02272. PubMed DOI PMC

Ho PL, Wang Y, Liu MCJ, Lai ELY, Law PYT, Cao H, Chow KH. 2018. IncX3 epidemic plasmid carrying blaNDM-5 in Escherichia coli from swine in multiple geographic areas in China. Antimicrob Agents Chemother 62:e00295-17. 10.1128/AAC.02295-17. PubMed DOI PMC

Chouikha I, Germon P, Brée A, Gilot P, Moulin-Schouleur M, Schouler C. 2006. A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence. J Bacteriol 188:977–987. 10.1128/JB.188.3.977-987.2006. PubMed DOI PMC

CLSI. 2018. Performance standards for antimicrobial susceptibility testing; twenty-eighth informational supplement. CLSI document M100-S28. Clinical and Laboratory Standards Institute, Wayne, PA.

Bolger AM, Marc L, Bjoern U. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. 10.1093/bioinformatics/btu170. PubMed DOI PMC

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. 10.1089/cmb.2012.0021. PubMed DOI PMC

Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. 10.1038/nmeth.2474. PubMed DOI

Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. 10.1371/journal.pcbi.1005595. PubMed DOI PMC

Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, Stevens R, Vonstein V, Wattam AR, Xia F. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. 10.1038/srep08365. PubMed DOI PMC

Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. 10.1093/jac/dks261. PubMed DOI PMC

Liu B, Zheng D, Jin Q, Chen L, Yang J. 2019. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47:D687–D692. 10.1093/nar/gky1080. PubMed DOI PMC

Carattoli A, Zankari E, Garciá-Fernández A, Larsen MV, Lund O, Villa L, Aarestrup FM, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. 10.1128/AAC.02412-14. PubMed DOI PMC

Ingle DJ, Valcanis M, Kuzevski A, Tauschek M, Inouye M, Stinear T, Levine MM, Robins-Browne RM, Holt KE. 2015. EcOH: in silico serotyping of E. coli from short read data. BioRxiv:e032151. 10.1101/032151. PubMed DOI PMC

Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O. 2018. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb Genomics 4:7. 10.1099/mgen.0.000192. PubMed DOI PMC

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. 10.1093/bioinformatics/btu153. PubMed DOI

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. 10.1093/bioinformatics/btv421. PubMed DOI PMC

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. 10.1093/bioinformatics/btl446. PubMed DOI

Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. 10.1093/nar/gkz239. PubMed DOI PMC

Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, Carriço JA, Achtman M. 2018. Grapetree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 28:1395–1404. 10.1101/gr.232397.117. PubMed DOI PMC

Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. 10.1371/journal.pone.0011147. PubMed DOI PMC

Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402. 10.1186/1471-2164-12-402. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...