Carboxylate-assisted C-H activation of phenylpyridines with copper, palladium and ruthenium: a mass spectrometry and DFT study
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29861892
PubMed Central
PMC5949854
DOI
10.1039/c5sc01729g
PII: c5sc01729g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The C-H activation of 2-phenylpyridine, catalyzed by copper(ii), palladium(ii) and ruthenium(ii) carboxylates, was studied in the gas phase. ESI-MS, infrared multiphoton dissociation spectroscopy and quantum chemical calculations were combined to investigate the intermediate species in the reaction. Collision induced dissociation (CID) experiments and DFT calculations allowed estimation of the energy required for this C-H activation step and the subsequent acetic acid loss. Hammett plots constructed from the CID experiments using different copper carboxylates as catalysts revealed that the use of stronger acids accelerates the C-H activation step. The reasoning can be traced from the associated transition structures that suggest a concerted mechanism and the key effect of the carbon-metal bond pre-formation. Carboxylates derived from stronger acids make the metal atom more electrophilic and therefore shift the reaction towards the formation of C-H activated products.
Zobrazit více v PubMed
Labinger J. A., Bercaw J. E. Nature. 2002;417:507–514. PubMed
Godula K., Sames D. Science. 2006;312:67–72. PubMed
Activation and Functionalization of C–H Bonds, ed. K. I. Goldberg and A. S. Goldman, American Chemical Society, Washington, DC, 2004, vol. 885.
Schwarz H. Angew. Chem., Int. Ed. 2011;50:10096–10115. PubMed
Roithová J., Schröder D. Chem. Rev. 2010;110:1170–1211. PubMed
Schwarz H. Isr. J. Chem. 2014;54:1413–1431.
Dick A. R., Sanford M. S. Tetrahedron. 2006;62:2439–2463.
Hashiguchi B. G., Bischof S. M., Konnick M. M., Periana R. A. Acc. Chem. Res. 2012;45:885–898. PubMed
Periana R. A., Bhalla G., Tenn W. J., Young K. J. H., Liu X. Y., Mironov O., Jones C., Ziatdinov V. R. J. Mol. Catal. A Chem. 2004;220:7–25.
Balcells D., Clot E., Eisenstein O. Chem. Rev. 2010;110:749–823. PubMed
Boutadla Y., Davies D. L., Macgregor S. A., Poblador-Bahamonde A. I. Dalton Trans. 2009:5820–5831. PubMed
Neufeldt S. R., Sanford M. S. Acc. Chem. Res. 2012;45:936–946. PubMed PMC
Deng G., Zhao L., Li C.-J. Angew. Chem., Int. Ed. 2008;47:6278–6282. PubMed
Topczewski J. J., Sanford M. S. Chem. Sci. 2015;6:70–76. PubMed PMC
Arnold P. L., Sanford M. S., Pearson S. M. J. Am. Chem. Soc. 2009;131:13912–13913. PubMed
Zultanski S. L., Stahl S. S. J. Organomet. Chem. 2015 doi: 10.1016/j.jorganchem.2015.03.003. PubMed DOI PMC
King A. E., Huffman L. M., Casitas A., Costas M., Ribas X., Stahl S. S. J. Am. Chem. Soc. 2010;132:12068–12073. PubMed
Gandeepan P., Cheng C.-H. Chem.–Asian J. 2015;10:824–838. PubMed
Yang J. Org. Biomol. Chem. 2015;13:1930–1941. PubMed
Gunanathan C., Milstein D. Chem. Rev. 2014;114:12024–12087. PubMed
Liron F., Oble J., Lorion M. M., Poli G. Eur. J. Org. Chem. 2014:5863–5883.
Mkhalid I. A. I., Barnard J. H., Marder T. B., Murphy J. M., Hartwig J. F. Chem. Rev. 2010;110:890–931. PubMed
Cheng C., Hartwig J. F. J. Am. Chem. Soc. 2014;136:12064–12072. PubMed
Gerdes G., Chen P. Organometallics. 2003;22:2217–2225.
Hinderling C., Plattner D. A., Chen P. Angew. Chem., Int. Ed. Engl. 1997;36:243–244.
Ackermann L. Chem. Rev. 2011;111:1315–1345. PubMed
Dick A. R., Hull K. L., Sanford M. S. J. Am. Chem. Soc. 2004;126:2300–2301. PubMed
Desai L. V., Stowers K. J., Sanford M. S. J. Am. Chem. Soc. 2008;130:13285–13293. PubMed PMC
Lyons T. W., Sanford M. S. Chem. Rev. 2010;110:1147–1169. PubMed PMC
Shul’pin G. B. Org. Biomol. Chem. 2010;8:4217–4228. PubMed
Lapointe D., Fagnou K. Chem. Lett. 2010;39:1118–1126.
Lyons T. W., Sanford M. S. Chem. Rev. 2010;110:1147–1169. PubMed PMC
Suess A. M., Ertem M. Z., Cramer C. J., Stahl S. S. J. Am. Chem. Soc. 2013;135:9797–9804. PubMed
Li Q., Driess M., Hartwig J. F. Angew. Chem., Int. Ed. 2014;53:8471–8474. PubMed
Zhang F., Spring D. R. Chem. Soc. Rev. 2014;43:6906–6919. PubMed
Simmons E. M., Hartwig J. F. J. Am. Chem. Soc. 2010;132:17092–17095. PubMed PMC
Cho S. H., Hartwig J. F. J. Am. Chem. Soc. 2013;135:8157–8160. PubMed
Lee D., Kim Y., Chang S. J. Org. Chem. 2013;78:11102–11109. PubMed
Winstein S., Traylor T. G. J. Am. Chem. Soc. 1955;77:3747–3752.
Corwin A. H., Naylor M. A. J. Am. Chem. Soc. 1947;69:1004–1009.
Brown H. C., Nelson K. L. J. Am. Chem. Soc. 1953;75:6292–6299.
Brown H. C., McGary C. W. J. Am. Chem. Soc. 1955;77:2310–2312.
Klapproth W. J., Westheimer F. H. J. Am. Chem. Soc. 1950;72:4461–4465.
Mitchell J., Smith D. M., Sandell E. B. J. Org. Chem. 1967;32:752–755.
Jazzar R., Hitce J., Renaudat A., Sofack-Kreutzer J., Baudoin O. Chem.–Eur. J. 2010;16:2654–2672. PubMed
Ess D. H., Bischof S. M., Oxgaard J., Periana R. A., Goddard W. A. Organometallics. 2008;27:6440–6445.
O'Reilly M. E., Fu R., Nielsen R. J., Sabat M., Goddard W. A., Gunnoe T. B. J. Am. Chem. Soc. 2014;136:14690–14693. PubMed
Jafarpour F., Hazrati H., Mohasselyazdi N., Khoobi M., Shafiee A. Chem. Commun. 2013;49:10935–10937. PubMed
Deuten K., Dahlenburg L. Transition Met. Chem. 1980;5:222–225.
Fung C. W., Khorramdel-Vahed M., Ranson R. J., Roberts R. M. G. J. Chem. Soc., Perkin Trans. 2. 1980:267–272.
Cook A. K., Sanford M. S. J. Am. Chem. Soc. 2015;137:3109–3118. PubMed
Neufeldt S. R., Seigerman C. K., Sanford M. S. Org. Lett. 2013;15:2302–2305. PubMed PMC
McMurtrey K. B., Racowski J. M., Sanford M. S. Org. Lett. 2012;14:4094–4097. PubMed PMC
Emmert M. H., Cook A. K., Xie Y. J., Sanford M. S. Angew. Chem., Int. Ed. 2011;50:9409–9412. PubMed
Kubota A., Sanford M. S. Synthesis. 2011:2579–2589. PubMed PMC
Cannon J. S., Zou L., Liu P., Lan Y., Oleary D. J., Houk K. N., Grubbs R. H. J. Am. Chem. Soc. 2014:6733–6743. PubMed PMC
Neufeldt S. R., Sanford M. S. Org. Lett. 2010;12:532–535. PubMed PMC
Stowers K. J., Sanford M. S. Org. Lett. 2009;11:4584–4587. PubMed PMC
Davies D. L., Donald S. M. A., Macgregor S. A. J. Am. Chem. Soc. 2005;127:13754–13755. PubMed
Boulho C., Djukic J.-P. Dalton Trans. 2010:8893–8905. PubMed
Gómez M., Granell J., Martinez M. J. Chem. Soc., Dalton Trans. 1998:37–44.
Maleckis A., Kampf J. W., Sanford M. S. J. Am. Chem. Soc. 2013;135:6618–6625. PubMed
Sanhueza I. A., Wagner A. M., Sanford M. S., Schoenebeck F. Chem. Sci. 2013;4:2767–2775.
Canty A. J., Ariafard A., Sanford M. S., Yates B. F. Organometallics. 2013;32:544–555.
Campbell A. N., White P. B., Guzei I. A., Stahl S. S. J. Am. Chem. Soc. 2010;132:15116–15119. PubMed PMC
Li B., Darcel C., Dixneuf P. H. ChemCatChem. 2014;6:127–130.
Ryabov A. D. Chem. Rev. 1990;90:403–424.
Ryabov A. D., Sakodinskaya I. K., Yatsimirsky A. K. J. Chem. Soc., Dalton Trans. 1985:2629–2638.
Gómez M., Granell J., Martinez M. Organometallics. 1997;16:2539–2546.
Davies D. L., Donald S. M. A., Al-Duaij O., Macgregor S. A., Pölleth M. J. Am. Chem. Soc. 2006;128:4210–4211. PubMed
Young K. J. H., Oxgaard J., Ess D. H., Meier S. K., Stewart T., Goddard W. A., Periana R. A. Chem. Commun. 2009:3270–3272. PubMed
Boutadla Y., Davies D. L., Macgregor S. A., Poblador-Bahamonde A. I. Dalton Trans. 2009:5820–5831. PubMed
Canty A. J., van Koten G. Acc. Chem. Res. 1995;28:406–413.
Ferrer Flegeau E., Bruneau C., Dixneuf P. H., Jutand A. J. Am. Chem. Soc. 2011;133:10161–10170. PubMed
Chen X., Hao X., Goodhue C. E., Yu J. J. Am. Chem. Soc. 2006;128:6790–6791. PubMed
John A., Nicholas K. M. J. Org. Chem. 2011;76:4158–4162. PubMed
Ackermann L., Vicente R., Potukuchi H. K., Pirovano V. Org. Lett. 2010;12:5032–5035. PubMed
Shaffer C. J., Révész Á., Schröder D., Severa L., Teplý F., Zins E. L., Jašíková L., Roithová J. Angew. Chem., Int. Ed. 2012;51:10050–10053. PubMed
Roithová J. Chem. Soc. Rev. 2012;41:547–559. PubMed
Roithová J., Milko P. J. Am. Chem. Soc. 2010;132:281–288. PubMed
Milko P., Roithová J., Tsierkezos N., Schröder D. J. Am. Chem. Soc. 2008;130:7186–7187. PubMed
Rokob T. A., Rulíšek L., Šrogl J., Révész Á., Zins E. L., Schröder D. Inorg. Chem. 2011;50:9968–9979. PubMed
Chiavarino B., Crestoni M. E., Fornarini S., Taioli S., Mancini I., Tosi P. J. Chem. Phys. 2012;137:024307. PubMed
Jašíková L., Hanikýřová E., Schröder D., Roithová J. J. Mass Spectrom. 2012;47:460–465. PubMed
Grimme S., Hujo W., Kirchner B. Phys. Chem. Chem. Phys. 2012;14:4875–4883. PubMed
Harrison A. G. J. Mass Spectrom. 1999;589:577–589.
Becker H., Einführung in die Elektronentheorie organisch-chemischer Reaktionene, Berlin, Deutscher Verlag der Wissenschaften, 1961.
Vikse K. L., Henderson M. A., Oliver A. G., McIndoe J. S. Chem. Commun. 2010;46:7412–7414. PubMed
Lioe H., O'Hair R. A. J. Org. Biomol. Chem. 2005;3:3618–3628. PubMed
Lebrasseur N., Larrosa I. J. Am. Chem. Soc. 2008;130:2926–2927. PubMed
Zins E., Pepe C., Schröder D. J. Mass Spectrom. 2010;45:1253–1260. PubMed
Ortega J. M., Glotin F., Prazeres R. Infrared Phys. Technol. 2006;49:133–138.
Mac Aleese L., Simon A., McMahon T. B., Ortega J.-M., Scuderi D., Lemaire J., Maître P. Int. J. Mass Spectrom. 2006;249–250:14–20.
Paizs B., Bythell B. J., Maître P. J. Am. Soc. Mass Spectrom. 2012;23:664–675. PubMed
Grimme S. J. Comput. Chem. 2006;27:1787–1799. PubMed
Grimme S., Antony J., Ehrlich S., Krieg H. J. Chem. Phys. 2010;132:154104. PubMed
Bambusurils as a mechanistic tool for probing anion effects