Carboxylate-assisted C-H activation of phenylpyridines with copper, palladium and ruthenium: a mass spectrometry and DFT study

. 2015 Oct 01 ; 6 (10) : 5544-5553. [epub] 20150701

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29861892

The C-H activation of 2-phenylpyridine, catalyzed by copper(ii), palladium(ii) and ruthenium(ii) carboxylates, was studied in the gas phase. ESI-MS, infrared multiphoton dissociation spectroscopy and quantum chemical calculations were combined to investigate the intermediate species in the reaction. Collision induced dissociation (CID) experiments and DFT calculations allowed estimation of the energy required for this C-H activation step and the subsequent acetic acid loss. Hammett plots constructed from the CID experiments using different copper carboxylates as catalysts revealed that the use of stronger acids accelerates the C-H activation step. The reasoning can be traced from the associated transition structures that suggest a concerted mechanism and the key effect of the carbon-metal bond pre-formation. Carboxylates derived from stronger acids make the metal atom more electrophilic and therefore shift the reaction towards the formation of C-H activated products.

Zobrazit více v PubMed

Labinger J. A., Bercaw J. E. Nature. 2002;417:507–514. PubMed

Godula K., Sames D. Science. 2006;312:67–72. PubMed

Activation and Functionalization of C–H Bonds, ed. K. I. Goldberg and A. S. Goldman, American Chemical Society, Washington, DC, 2004, vol. 885.

Schwarz H. Angew. Chem., Int. Ed. 2011;50:10096–10115. PubMed

Roithová J., Schröder D. Chem. Rev. 2010;110:1170–1211. PubMed

Schwarz H. Isr. J. Chem. 2014;54:1413–1431.

Dick A. R., Sanford M. S. Tetrahedron. 2006;62:2439–2463.

Hashiguchi B. G., Bischof S. M., Konnick M. M., Periana R. A. Acc. Chem. Res. 2012;45:885–898. PubMed

Periana R. A., Bhalla G., Tenn W. J., Young K. J. H., Liu X. Y., Mironov O., Jones C., Ziatdinov V. R. J. Mol. Catal. A Chem. 2004;220:7–25.

Balcells D., Clot E., Eisenstein O. Chem. Rev. 2010;110:749–823. PubMed

Boutadla Y., Davies D. L., Macgregor S. A., Poblador-Bahamonde A. I. Dalton Trans. 2009:5820–5831. PubMed

Neufeldt S. R., Sanford M. S. Acc. Chem. Res. 2012;45:936–946. PubMed PMC

Deng G., Zhao L., Li C.-J. Angew. Chem., Int. Ed. 2008;47:6278–6282. PubMed

Topczewski J. J., Sanford M. S. Chem. Sci. 2015;6:70–76. PubMed PMC

Arnold P. L., Sanford M. S., Pearson S. M. J. Am. Chem. Soc. 2009;131:13912–13913. PubMed

Zultanski S. L., Stahl S. S. J. Organomet. Chem. 2015 doi: 10.1016/j.jorganchem.2015.03.003. PubMed DOI PMC

King A. E., Huffman L. M., Casitas A., Costas M., Ribas X., Stahl S. S. J. Am. Chem. Soc. 2010;132:12068–12073. PubMed

Gandeepan P., Cheng C.-H. Chem.–Asian J. 2015;10:824–838. PubMed

Yang J. Org. Biomol. Chem. 2015;13:1930–1941. PubMed

Gunanathan C., Milstein D. Chem. Rev. 2014;114:12024–12087. PubMed

Liron F., Oble J., Lorion M. M., Poli G. Eur. J. Org. Chem. 2014:5863–5883.

Mkhalid I. A. I., Barnard J. H., Marder T. B., Murphy J. M., Hartwig J. F. Chem. Rev. 2010;110:890–931. PubMed

Cheng C., Hartwig J. F. J. Am. Chem. Soc. 2014;136:12064–12072. PubMed

Gerdes G., Chen P. Organometallics. 2003;22:2217–2225.

Hinderling C., Plattner D. A., Chen P. Angew. Chem., Int. Ed. Engl. 1997;36:243–244.

Ackermann L. Chem. Rev. 2011;111:1315–1345. PubMed

Dick A. R., Hull K. L., Sanford M. S. J. Am. Chem. Soc. 2004;126:2300–2301. PubMed

Desai L. V., Stowers K. J., Sanford M. S. J. Am. Chem. Soc. 2008;130:13285–13293. PubMed PMC

Lyons T. W., Sanford M. S. Chem. Rev. 2010;110:1147–1169. PubMed PMC

Shul’pin G. B. Org. Biomol. Chem. 2010;8:4217–4228. PubMed

Lapointe D., Fagnou K. Chem. Lett. 2010;39:1118–1126.

Lyons T. W., Sanford M. S. Chem. Rev. 2010;110:1147–1169. PubMed PMC

Suess A. M., Ertem M. Z., Cramer C. J., Stahl S. S. J. Am. Chem. Soc. 2013;135:9797–9804. PubMed

Li Q., Driess M., Hartwig J. F. Angew. Chem., Int. Ed. 2014;53:8471–8474. PubMed

Zhang F., Spring D. R. Chem. Soc. Rev. 2014;43:6906–6919. PubMed

Simmons E. M., Hartwig J. F. J. Am. Chem. Soc. 2010;132:17092–17095. PubMed PMC

Cho S. H., Hartwig J. F. J. Am. Chem. Soc. 2013;135:8157–8160. PubMed

Lee D., Kim Y., Chang S. J. Org. Chem. 2013;78:11102–11109. PubMed

Winstein S., Traylor T. G. J. Am. Chem. Soc. 1955;77:3747–3752.

Corwin A. H., Naylor M. A. J. Am. Chem. Soc. 1947;69:1004–1009.

Brown H. C., Nelson K. L. J. Am. Chem. Soc. 1953;75:6292–6299.

Brown H. C., McGary C. W. J. Am. Chem. Soc. 1955;77:2310–2312.

Klapproth W. J., Westheimer F. H. J. Am. Chem. Soc. 1950;72:4461–4465.

Mitchell J., Smith D. M., Sandell E. B. J. Org. Chem. 1967;32:752–755.

Jazzar R., Hitce J., Renaudat A., Sofack-Kreutzer J., Baudoin O. Chem.–Eur. J. 2010;16:2654–2672. PubMed

Ess D. H., Bischof S. M., Oxgaard J., Periana R. A., Goddard W. A. Organometallics. 2008;27:6440–6445.

O'Reilly M. E., Fu R., Nielsen R. J., Sabat M., Goddard W. A., Gunnoe T. B. J. Am. Chem. Soc. 2014;136:14690–14693. PubMed

Jafarpour F., Hazrati H., Mohasselyazdi N., Khoobi M., Shafiee A. Chem. Commun. 2013;49:10935–10937. PubMed

Deuten K., Dahlenburg L. Transition Met. Chem. 1980;5:222–225.

Fung C. W., Khorramdel-Vahed M., Ranson R. J., Roberts R. M. G. J. Chem. Soc., Perkin Trans. 2. 1980:267–272.

Cook A. K., Sanford M. S. J. Am. Chem. Soc. 2015;137:3109–3118. PubMed

Neufeldt S. R., Seigerman C. K., Sanford M. S. Org. Lett. 2013;15:2302–2305. PubMed PMC

McMurtrey K. B., Racowski J. M., Sanford M. S. Org. Lett. 2012;14:4094–4097. PubMed PMC

Emmert M. H., Cook A. K., Xie Y. J., Sanford M. S. Angew. Chem., Int. Ed. 2011;50:9409–9412. PubMed

Kubota A., Sanford M. S. Synthesis. 2011:2579–2589. PubMed PMC

Cannon J. S., Zou L., Liu P., Lan Y., Oleary D. J., Houk K. N., Grubbs R. H. J. Am. Chem. Soc. 2014:6733–6743. PubMed PMC

Neufeldt S. R., Sanford M. S. Org. Lett. 2010;12:532–535. PubMed PMC

Stowers K. J., Sanford M. S. Org. Lett. 2009;11:4584–4587. PubMed PMC

Davies D. L., Donald S. M. A., Macgregor S. A. J. Am. Chem. Soc. 2005;127:13754–13755. PubMed

Boulho C., Djukic J.-P. Dalton Trans. 2010:8893–8905. PubMed

Gómez M., Granell J., Martinez M. J. Chem. Soc., Dalton Trans. 1998:37–44.

Maleckis A., Kampf J. W., Sanford M. S. J. Am. Chem. Soc. 2013;135:6618–6625. PubMed

Sanhueza I. A., Wagner A. M., Sanford M. S., Schoenebeck F. Chem. Sci. 2013;4:2767–2775.

Canty A. J., Ariafard A., Sanford M. S., Yates B. F. Organometallics. 2013;32:544–555.

Campbell A. N., White P. B., Guzei I. A., Stahl S. S. J. Am. Chem. Soc. 2010;132:15116–15119. PubMed PMC

Li B., Darcel C., Dixneuf P. H. ChemCatChem. 2014;6:127–130.

Ryabov A. D. Chem. Rev. 1990;90:403–424.

Ryabov A. D., Sakodinskaya I. K., Yatsimirsky A. K. J. Chem. Soc., Dalton Trans. 1985:2629–2638.

Gómez M., Granell J., Martinez M. Organometallics. 1997;16:2539–2546.

Davies D. L., Donald S. M. A., Al-Duaij O., Macgregor S. A., Pölleth M. J. Am. Chem. Soc. 2006;128:4210–4211. PubMed

Young K. J. H., Oxgaard J., Ess D. H., Meier S. K., Stewart T., Goddard W. A., Periana R. A. Chem. Commun. 2009:3270–3272. PubMed

Boutadla Y., Davies D. L., Macgregor S. A., Poblador-Bahamonde A. I. Dalton Trans. 2009:5820–5831. PubMed

Canty A. J., van Koten G. Acc. Chem. Res. 1995;28:406–413.

Ferrer Flegeau E., Bruneau C., Dixneuf P. H., Jutand A. J. Am. Chem. Soc. 2011;133:10161–10170. PubMed

Chen X., Hao X., Goodhue C. E., Yu J. J. Am. Chem. Soc. 2006;128:6790–6791. PubMed

John A., Nicholas K. M. J. Org. Chem. 2011;76:4158–4162. PubMed

Ackermann L., Vicente R., Potukuchi H. K., Pirovano V. Org. Lett. 2010;12:5032–5035. PubMed

Shaffer C. J., Révész Á., Schröder D., Severa L., Teplý F., Zins E. L., Jašíková L., Roithová J. Angew. Chem., Int. Ed. 2012;51:10050–10053. PubMed

Roithová J. Chem. Soc. Rev. 2012;41:547–559. PubMed

Roithová J., Milko P. J. Am. Chem. Soc. 2010;132:281–288. PubMed

Milko P., Roithová J., Tsierkezos N., Schröder D. J. Am. Chem. Soc. 2008;130:7186–7187. PubMed

Rokob T. A., Rulíšek L., Šrogl J., Révész Á., Zins E. L., Schröder D. Inorg. Chem. 2011;50:9968–9979. PubMed

Chiavarino B., Crestoni M. E., Fornarini S., Taioli S., Mancini I., Tosi P. J. Chem. Phys. 2012;137:024307. PubMed

Jašíková L., Hanikýřová E., Schröder D., Roithová J. J. Mass Spectrom. 2012;47:460–465. PubMed

Grimme S., Hujo W., Kirchner B. Phys. Chem. Chem. Phys. 2012;14:4875–4883. PubMed

Harrison A. G. J. Mass Spectrom. 1999;589:577–589.

Becker H., Einführung in die Elektronentheorie organisch-chemischer Reaktionene, Berlin, Deutscher Verlag der Wissenschaften, 1961.

Vikse K. L., Henderson M. A., Oliver A. G., McIndoe J. S. Chem. Commun. 2010;46:7412–7414. PubMed

Lioe H., O'Hair R. A. J. Org. Biomol. Chem. 2005;3:3618–3628. PubMed

Lebrasseur N., Larrosa I. J. Am. Chem. Soc. 2008;130:2926–2927. PubMed

Zins E., Pepe C., Schröder D. J. Mass Spectrom. 2010;45:1253–1260. PubMed

Ortega J. M., Glotin F., Prazeres R. Infrared Phys. Technol. 2006;49:133–138.

Mac Aleese L., Simon A., McMahon T. B., Ortega J.-M., Scuderi D., Lemaire J., Maître P. Int. J. Mass Spectrom. 2006;249–250:14–20.

Paizs B., Bythell B. J., Maître P. J. Am. Soc. Mass Spectrom. 2012;23:664–675. PubMed

Grimme S. J. Comput. Chem. 2006;27:1787–1799. PubMed

Grimme S., Antony J., Ehrlich S., Krieg H. J. Chem. Phys. 2010;132:154104. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...