Anti-cancer organoruthenium(ii) complexes and their interactions with cysteine and its analogues. A mass-spectrometric study
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print
Document type Journal Article
PubMed
30702097
PubMed Central
PMC8609305
DOI
10.1039/c8dt04350g
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The ruthenium complexes [Ru(CYM)(p-Cl-dkt)(Cl)] (1), [Ru(CYM)(pta)(p-Cl-dkt)]PF6 (2), and [Ru(CYM)(pta)Cl2] (3, RAPTA-C) (CYM = para-cymene, p-Cl-dkt = 1-(4-chlorophenyl)-4,4,4-trifluorobutane-1,3-dione, pta = 1,3,5-triaza-7-phosphaadamantane) are biologically active and show anti-cancer activities, albeit with different mechanisms. To further understand these mechanisms, we compared their speciation in aqueous solutions with an amino acid (cysteine), with an amino acid derivative (N-acetylcysteine) and with a tripeptide (glutathione) by Mass Spectrometry (MS). Here, we show that all ruthenium complexes have high selectivity for cysteine and cysteine-derived molecules. On one hand, [Ru(CYM)(p-Cl-dkt)(Cl)] undergoes solvolysis in water and forms [Ru2(CYM)2(OH)3]+. Subsequently, all hydroxyl anions are exchanged by deprotonated cysteine. Infrared Photodissociation Spectroscopy (IRPD) showed that cysteine binds to the ruthenium atoms via the deprotonated thiol group and that sulfur bridges the ruthenium centers. On the other hand, the pta-bearing complexes remain monometallic and undergo only slow Cl or p-Cl-dkt exchange by deprotonated cysteine. Therefore, the pta ligand protects the ruthenium complexes from ligand exchange with water and from the formation of biruthenium clusters, possibly explaining why the mechanism of pta-bearing ruthenium complexes is not based on ROS production but on their reactivity as monometallic complexes.
See more in PubMed
Nareddy P. Jordan F. Szostak M. ACS Catal. 2017;7:5721. doi: 10.1021/acscatal.7b01645. DOI
Zha G.-F. Qin H.-L. Kantchev E. A. B. RSC Adv. 2016;6:30875. doi: 10.1039/C6RA02742C. DOI
Arockiam P. B. Bruneau C. Dixneuf P. H. Chem. Rev. 2012;112:5879. doi: 10.1039/C6RA02742C. PubMed DOI
Briš A. Turel I. Roithová J. Eur. J. Org. Chem. 2018:6107. doi: 10.1002/ejoc.201800787. DOI
Seršen S. Kljun J. Kryeziu K. Panchuk R. Alte B. Körner W. Heffeter P. Berger W. Turel I. J. Med. Chem. 2015;58:3984. doi: 10.1021/acs.jmedchem.5b00288. PubMed DOI
Gaiddon C. Pfeffer M. Eur. J. Inorg. Chem. 2017:1639. doi: 10.1002/ejic.201601216. DOI
Noffke A. L. Habtemariam A. Pizarro A. M. Sadler P. J. Chem. Commun. 2012;48:5219. doi: 10.1039/C2CC30678F. PubMed DOI
Soldevila-Barreda J. J. Romero-Canelo I. Habtemariam A. Sadler P. J. Nat. Commun. 2015;6:6582. doi: 10.1038/ncomms7582. PubMed DOI PMC
Tomas-Gamasa M. Martinez-Calvo M. Couceiro J. R. Mascarenas J. L. Nat. Commun. 2016;7:12538. doi: 10.1038/ncomms12538. PubMed DOI PMC
Thota S. Rodrigues D. A. Crans D. C. Barreiro E. J. J. Med. Chem. 2018;61:5805. doi: 10.1021/acs.jmedchem.7b01689. PubMed DOI
Zeng L. Gupta P. Chen Y. Wang E. Ji L. Chao H. Chen Z.-S. Chem. Soc. Rev. 2017;46:5771. doi: 10.1039/C7CS00195A. PubMed DOI PMC
Vidimar V. Meng X. Klajner M. Licona C. Fetzer L. Harlepp S. Hébraud P. Sidhoum M. Sirlin C. Loeffler J.-P. Mellitzer G. Sava G. Pfeffer M. Gaiddon C. Biochem. Pharmacol. 2012;84:1428. doi: 10.1016/j.bcp.2012.08.022. PubMed DOI
Dougan S. J. Habtemariam A. McHale S. E. Parsons S. Sadler P. J. Proc. Natl. Acad. Sci. U. S. A. 2008;105:11628. doi: 10.1073/pnas.0800076105. PubMed DOI PMC
Kamatchi T. S. Chitrapriya N. Kim S. K. Fronczek F. R. Natarajan K. Eur. J. Med. Chem. 2013;59:253. doi: 10.1016/j.ejmech.2012.11.024. PubMed DOI
Su W. Qian Q. Li P. Lei X. Xiao Q. Huang S. Huang C. Cui J. Inorg. Chem. 2013;52:12440. doi: 10.1021/ic401362s. PubMed DOI
Chen H. Parkinson J. A. Morris R. E. Sadler P. J. J. Am. Chem. Soc. 2003;125:173. doi: 10.1021/ja027719m. PubMed DOI
Adhireksan Z. Davey1 G. E. Campomanes P. Groess M. Clavel C. M. Yu H. Nazarov A. A. Yeo C. H. F. Ang W. H. Dröge P. Rothlisberger U. Dyson P. J. Davey C. A. Nat. Commun. 2014;5:3462. doi: 10.1038/ncomms4462. PubMed DOI PMC
Wolters D. A. Stefanopoulou M. Dyson P. J. Groessl M. Metallomics. 2012;4:1185. doi: 10.1039/C2MT20070H. PubMed DOI
Casini A. Gabbiani C. Sorrentino F. Rigobello M. P. Bindoli A. Geldbach T. J. Marrone A. Re N. Hartinger C. G. Dyson P. J. Messori L. J. Med. Chem. 2008;51:6773. doi: 10.1021/jm8006678. PubMed DOI
Casini A. Mastrobuoni G. Ang W. H. Gabbiani C. Pieraccini G. Moneti G. Dyson P. J. Messori L. ChemMedChem. 2007;2:631. doi: 10.1002/cmdc.200600258. PubMed DOI
Kljun J. Turel I. Eur. J. Inorg. Chem. 2017:1655. doi: 10.1002/ejic.201601314. DOI
Casini A. Gabbiani Ch. Michelucci E. Pieraccini G. Moneti G. Dyson P. J. Messori L. J. Biol. Inorg. Chem. 2009;14:761. doi: 10.1007/s00775-009-0489-5. PubMed DOI
Hartinger C. G. Groessl M. Meier S. M. Casini A. Dyson P. J. Chem. Soc. Rev. 2013;42:6186. doi: 10.1039/C3CS35532B. PubMed DOI
Lin Y. Huang Y. D. Zheng W. Wu K. Luo Q. Zhao Y. Xiong S. X. Wang F. Y. J. Inorg. Biochem. 2015;146:44. doi: 10.1016/j.jinorgbio.2015.02.015. PubMed DOI
Wenzel M. Casini A. Coord. Chem. Rev. 2017;352:432. doi: 10.1016/j.ccr.2017.02.012. DOI
Nišavić M. Janjić G. V. Hozić A. Petković M. Milčić M. K. Vujčić Z. Cindrić M. Metallomics. 2018;10:587. doi: 10.1039/C7MT00330G. PubMed DOI
Babak M. V. Meier S. M. Huber K. V. M. Reynisson J. Legin A. A. Jakupec M. A. Roller A. Stukalov A. Gridling M. Bennett K. L. Colinge J. Berger W. Dyson P. J. Superti-Furga G. Keppler B. K. Hartinger C. G. Chem. Sci. 2015;6:2449. doi: 10.1039/C4SC03905J. PubMed DOI PMC
Sochorova Vokacova Z. Turel I. Burda J. J. Mol. Model. 2018;24:98. doi: 10.1007/s00894-018-3598-7. PubMed DOI
Hartinger C. G. Casini A. Duhot C. Tsybin Y. O. Messori L. Dyson P. J. J. Inorg. Biochem. 2008;102:2136. doi: 10.1016/j.jinorgbio.2008.08.002. PubMed DOI
Yassaghi G. Jašíková L. Roithová J. Int. J. Mass Spectrom. 2016;407:92. doi: 10.1016/j.ijms.2016.07.010. DOI
Schulz J. Shcherbachenko E. Roithová J. Organometallics. 2015;34:3979. doi: 10.1021/acs.organomet.5b00343. DOI
Škríba A. Schulz J. Roithová J. Organometallics. 2014;33:6868. doi: 10.1021/om500933w. DOI
Schulz J. Jašíková L. Škríba A. Roithová J. J. Am. Chem. Soc. 2014;136:11513. doi: 10.1021/ja505945d. PubMed DOI
Hývl J. Roithová J. Org. Lett. 2014;16:200. doi: 10.1021/ol403190g. PubMed DOI
Anania M. Jašíková L. Jašík J. Roithová J. Org. Biomol. Chem. 2017;15:7841. doi: 10.1039/C7OB01905J. PubMed DOI
Schulz J. Jašík J. Gray A. Roithová J. Chem. – Eur. J. 2016;22:9827. doi: 10.1002/chem.201601634. PubMed DOI
Škríba A. Jašík J. Andris E. Roithová J. Organometallics. 2016;35:990. doi: 10.1021/acs.organomet.6b00021. DOI
Chérioux F. Thomas C. M. Monnier T. Süss-Fink G. Polyhedron. 2003;22:543. doi: 10.1016/S0277-5387(02)01376-1. DOI
Gray A. Tsybizova A. Roithová J. Chem. Sci. 2015;6:5544. doi: 10.1039/C5SC01729G. PubMed DOI PMC
Ducháčková L. Schröder D. Roithová J. Inorg. Chem. 2011;50:3153. doi: 10.1021/ic2002767. PubMed DOI
Allardyce C. S. Dyson P. J. Ellis D. J. Heath S. L. Chem. Commun. 2001:1396. doi: 10.1039/B104021A. DOI
Zins E. L. Pepe C. Schröder D. J. Mass Spectrom. 2010;45:1253. doi: 10.1002/jms.1847. PubMed DOI
Carpenter J. E. McNary C. P. Furin A. Sweeney A. F. Armentrout P. B. J. Am. Soc. Mass Spectrom. 2017;28:1876. doi: 10.1007/s13361-017-1693-0. PubMed DOI
Jašík J. Žabka J. Roithová J. Gerlich D. Int. J. Mass Spectrom. 2013;354–355:204. doi: 10.1016/j.ijms.2013.06.007. DOI
Jašík J. Gerlich D. Roithová J. J. Phys. Chem. A. 2015;119:2532. doi: 10.1021/jp5088064. PubMed DOI
Becke A. D. J. Chem. Phys. 1993;98:5648. doi: 10.1063/1.464913. DOI
Lee C. Yang W. Parr R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;37:785. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Miehlich B. Savin A. Stoll H. Preuss H. Chem. Phys. Lett. 1989;157:200. doi: 10.1016/0009-2614(89)87234-3. DOI
Stephens P. J. Devlin F. J. Chabalowski C. F. Frisch M. J. J. Phys. Chem. 1994;98:11623. doi: 10.1021/j100096a001. DOI
Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI