Bambusurils as a mechanistic tool for probing anion effects

. 2019 Dec 02 ; 220 (0) : 58-70.

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31503271

Grantová podpora
European Research Council - International

Bambusuril macrocycles have high affinity towards anions (X-) such as PF6- and SbF6- or BF4- and ClO4-. Therefore, addition of bambusurils to reaction mixtures containing these anions effectively removes the free anions from the reaction process. Hence, comparing reactions with and without addition of bambusurils can demonstrate whether the anions actively participate in the reaction mechanism or not. We show this approach for gold(i) mediated addition of methanol to an alkyne. The reaction mechanism can proceed via monoaurated intermediates (e.g., in catalysis with [(IPr)AuX]) or via diaurated intermediates (e.g., in catalysis with [(PPh3)AuX]). We show that anions X- slightly affect the reaction rates, however the effect stays almost the same even after their encapsulation in the cavity of bambusurils. We also demonstrate that X- affects the overall reaction rate in the very same way as the reaction rate of the protodeauration step. All results are consistent with the indirect effect of X- by the acidity of the conjugated acid HX on the rate-determining step. There is no evidence that a direct involvement of X- would affect the reaction rate.

Zobrazit více v PubMed

Wesselbaum S. Moha V. Meuresch M. Brosinski S. Thenert K. M. Kothe J. Stein T. V. Englert U. Holscher M. Klankermayer J. Leitner W. Chem. Sci. 2015;6:693. doi: 10.1039/C4SC02087A. PubMed DOI PMC

Jimenez M. V. Perez-Torrente J. J. Bartolome M. I. Gierz V. Lahoz F. J. Oro L. A. Organometallics. 2008;27:224. doi: 10.1021/om700728a. DOI

Gnanamgari D. Sauer E. L. O. Schley N. D. Butler C. Incarvito C. D. Crabtree R. H. Organometallics. 2009;28:321. doi: 10.1021/om800821q. DOI

Echavarren A. M. Jiaoc N. Gevorgyand V. Chem. Soc. Rev. 2016;45:4445. doi: 10.1039/C6CS90072K. PubMed DOI

Zhang G. Q. Vasudevan K. V. Scott B. L. Hanson S. K. J. Am. Chem. Soc. 2013;135:8668. doi: 10.1021/ja402679a. PubMed DOI

Monot J. Brunel P. Kefalidis C. E. Espinosa-Jalapa N. A. Maron L. Martin-Vaca B. Bourissou D. Chem. Sci. 2016;7:2179. doi: 10.1039/C5SC04232A. PubMed DOI PMC

Rocchigiani L. Jia M. Bandini M. Macchioni A. ACS Catal. 2015;5:3911. doi: 10.1021/acscatal.5b00502. DOI

Kovacs G. Ujaque G. Lledos A. J. Am. Chem. Soc. 2008;130:853. doi: 10.1021/ja073578i. PubMed DOI

Davies D. L. Macgregor S. A. McMullin C. L. Chem. Rev. 2017;117:8649. doi: 10.1021/acs.chemrev.6b00839. PubMed DOI

Gray A. Tsybizova A. Roithova J. Chem. Sci. 2015;6:5544. doi: 10.1039/C5SC01729G. PubMed DOI PMC

Ciancaleoni G. Belpassi L. Zuccaccia D. Tarantelli F. Belanzoni P. ACS Catal. 2015;5:803. doi: 10.1021/cs501681f. DOI

Trinchillo M. Belanzoni P. Belpassi L. Biasiolo L. Busico V. D’Amora A. D’Amore L. Del Zotto A. Tarantelli F. Tuzi A. Zuccaccia D. Organometallics. 2016;35:641. doi: 10.1021/acs.organomet.5b00925. DOI

Asiri A. M. Hashmi A. S. K. Chem. Soc. Rev. 2016;45:4471. doi: 10.1039/C6CS00023A. PubMed DOI

Jia M. Bandini M. ACS Catal. 2015;5:1638–1652. doi: 10.1021/cs501902v. DOI

Hashmi A. S. K. Homogeneous Gold Catalysis Beyond Assumptions and Proposals-Characterized Intermediates. Angew. Chem., Int. Ed. 2010;49:5232. doi: 10.1002/anie.200907078. PubMed DOI

Zhdanko A. Maier M. E. Chem.–Eur. J. 2014;20:1918. doi: 10.1002/chem.201303795. PubMed DOI

Roithová J. Janková Š. Jašíková L. Váňa J. Hybelbauerova S. Angew. Chem., Int. Ed. 2012;51:8378. doi: 10.1002/anie.201204003. PubMed DOI

Oonishi Y. Gómez-Suárez A. Martin A. R. Nolan S. P. Angew. Chem., Int. Ed. 2013;52:9767. doi: 10.1002/anie.201304182. PubMed DOI

Gomez-Suarez A. Oonishi Y. Martin A. R. Vummaleti S. V. C. Nelson D. J. Cordes D. B. Slawin A. M. Z. Cavallo L. Nolan S. P. Poater A. Chem.–Eur. J. 2016;22:1125. doi: 10.1002/chem.201503097. PubMed DOI

Jašíková L. Anania M. Hybelbauerová S. Roithová J. J. Am. Chem. Soc. 2015;137:13647. doi: 10.1021/jacs.5b08744. PubMed DOI

Casals-Cruanas E. Gonzalez-Belman O. F. Besalu-Sala P. Nelson D. J. Poater A. Org. Biomol. Chem. 2017;15:6416. doi: 10.1039/C7OB01457K. PubMed DOI

Yu B. Acc. Chem. Res. 2018;51:507. doi: 10.1021/acs.accounts.7b00573. PubMed DOI

Zhdanko A. Maier M. E. ACS Catal. 2014;4:2770. doi: 10.1021/cs500446d. DOI

Brooner R. E. M. Brown T. J. Chee M. A. Widenhoefer R. A. Organometallics. 2016;35:2014. doi: 10.1021/acs.organomet.6b00306. DOI

Svec J. Necas M. Sindelar V. Angew. Chem., Int. Ed. 2010;49:2378. doi: 10.1002/anie.201000420. PubMed DOI

Lizal T. Sindelar V. Isr. J. Chem. 2018;58:326. doi: 10.1002/ijch.201700111. DOI

Havel V. Sindelar V. ChemPlusChem. 2015;80:1601. doi: 10.1002/cplu.201500345. PubMed DOI

Nolan S. P. Acc. Chem. Res. 2011;44:91. doi: 10.1021/ar1000764. PubMed DOI

Marion N. Ramon R. S. Nolan S. P. J. Am. Chem. Soc. 2009;131:448. doi: 10.1021/ja809403e. PubMed DOI

Veenboer R. M. P. Collado A. Dupuy S. Lebl T. Falivene L. Cavallo L. Cordes D. B. Slawin A. M. Z. Cazin C. S. J. Nolan S. P. Inner-Sphere versus Outer-Sphere Coordination of BF4− in a NHC–Gold(I) Complex. Organometallics. 2017;36:2861. doi: 10.1021/acs.organomet.7b00345. DOI

Gatto M. Belanzoni P. Belpassi L. Biasiolo L. Del Zotto A. Tarantelli F. Zuccaccia D. Solvent-, Silver-, and Acid-Free NHC–Au–X Catalyzed Hydration of Alkynes. The Pivotal Role of the Counterion. ACS Catal. 2016;6:7363. doi: 10.1021/acscatal.6b01626. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...