Bambusurils as a mechanistic tool for probing anion effects
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
European Research Council - International
PubMed
31503271
PubMed Central
PMC8609304
DOI
10.1039/c9fd00038k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bambusuril macrocycles have high affinity towards anions (X-) such as PF6- and SbF6- or BF4- and ClO4-. Therefore, addition of bambusurils to reaction mixtures containing these anions effectively removes the free anions from the reaction process. Hence, comparing reactions with and without addition of bambusurils can demonstrate whether the anions actively participate in the reaction mechanism or not. We show this approach for gold(i) mediated addition of methanol to an alkyne. The reaction mechanism can proceed via monoaurated intermediates (e.g., in catalysis with [(IPr)AuX]) or via diaurated intermediates (e.g., in catalysis with [(PPh3)AuX]). We show that anions X- slightly affect the reaction rates, however the effect stays almost the same even after their encapsulation in the cavity of bambusurils. We also demonstrate that X- affects the overall reaction rate in the very same way as the reaction rate of the protodeauration step. All results are consistent with the indirect effect of X- by the acidity of the conjugated acid HX on the rate-determining step. There is no evidence that a direct involvement of X- would affect the reaction rate.
Zobrazit více v PubMed
Wesselbaum S. Moha V. Meuresch M. Brosinski S. Thenert K. M. Kothe J. Stein T. V. Englert U. Holscher M. Klankermayer J. Leitner W. Chem. Sci. 2015;6:693. doi: 10.1039/C4SC02087A. PubMed DOI PMC
Jimenez M. V. Perez-Torrente J. J. Bartolome M. I. Gierz V. Lahoz F. J. Oro L. A. Organometallics. 2008;27:224. doi: 10.1021/om700728a. DOI
Gnanamgari D. Sauer E. L. O. Schley N. D. Butler C. Incarvito C. D. Crabtree R. H. Organometallics. 2009;28:321. doi: 10.1021/om800821q. DOI
Echavarren A. M. Jiaoc N. Gevorgyand V. Chem. Soc. Rev. 2016;45:4445. doi: 10.1039/C6CS90072K. PubMed DOI
Zhang G. Q. Vasudevan K. V. Scott B. L. Hanson S. K. J. Am. Chem. Soc. 2013;135:8668. doi: 10.1021/ja402679a. PubMed DOI
Monot J. Brunel P. Kefalidis C. E. Espinosa-Jalapa N. A. Maron L. Martin-Vaca B. Bourissou D. Chem. Sci. 2016;7:2179. doi: 10.1039/C5SC04232A. PubMed DOI PMC
Rocchigiani L. Jia M. Bandini M. Macchioni A. ACS Catal. 2015;5:3911. doi: 10.1021/acscatal.5b00502. DOI
Kovacs G. Ujaque G. Lledos A. J. Am. Chem. Soc. 2008;130:853. doi: 10.1021/ja073578i. PubMed DOI
Davies D. L. Macgregor S. A. McMullin C. L. Chem. Rev. 2017;117:8649. doi: 10.1021/acs.chemrev.6b00839. PubMed DOI
Gray A. Tsybizova A. Roithova J. Chem. Sci. 2015;6:5544. doi: 10.1039/C5SC01729G. PubMed DOI PMC
Ciancaleoni G. Belpassi L. Zuccaccia D. Tarantelli F. Belanzoni P. ACS Catal. 2015;5:803. doi: 10.1021/cs501681f. DOI
Trinchillo M. Belanzoni P. Belpassi L. Biasiolo L. Busico V. D’Amora A. D’Amore L. Del Zotto A. Tarantelli F. Tuzi A. Zuccaccia D. Organometallics. 2016;35:641. doi: 10.1021/acs.organomet.5b00925. DOI
Asiri A. M. Hashmi A. S. K. Chem. Soc. Rev. 2016;45:4471. doi: 10.1039/C6CS00023A. PubMed DOI
Jia M. Bandini M. ACS Catal. 2015;5:1638–1652. doi: 10.1021/cs501902v. DOI
Hashmi A. S. K. Homogeneous Gold Catalysis Beyond Assumptions and Proposals-Characterized Intermediates. Angew. Chem., Int. Ed. 2010;49:5232. doi: 10.1002/anie.200907078. PubMed DOI
Zhdanko A. Maier M. E. Chem.–Eur. J. 2014;20:1918. doi: 10.1002/chem.201303795. PubMed DOI
Roithová J. Janková Š. Jašíková L. Váňa J. Hybelbauerova S. Angew. Chem., Int. Ed. 2012;51:8378. doi: 10.1002/anie.201204003. PubMed DOI
Oonishi Y. Gómez-Suárez A. Martin A. R. Nolan S. P. Angew. Chem., Int. Ed. 2013;52:9767. doi: 10.1002/anie.201304182. PubMed DOI
Gomez-Suarez A. Oonishi Y. Martin A. R. Vummaleti S. V. C. Nelson D. J. Cordes D. B. Slawin A. M. Z. Cavallo L. Nolan S. P. Poater A. Chem.–Eur. J. 2016;22:1125. doi: 10.1002/chem.201503097. PubMed DOI
Jašíková L. Anania M. Hybelbauerová S. Roithová J. J. Am. Chem. Soc. 2015;137:13647. doi: 10.1021/jacs.5b08744. PubMed DOI
Casals-Cruanas E. Gonzalez-Belman O. F. Besalu-Sala P. Nelson D. J. Poater A. Org. Biomol. Chem. 2017;15:6416. doi: 10.1039/C7OB01457K. PubMed DOI
Yu B. Acc. Chem. Res. 2018;51:507. doi: 10.1021/acs.accounts.7b00573. PubMed DOI
Zhdanko A. Maier M. E. ACS Catal. 2014;4:2770. doi: 10.1021/cs500446d. DOI
Brooner R. E. M. Brown T. J. Chee M. A. Widenhoefer R. A. Organometallics. 2016;35:2014. doi: 10.1021/acs.organomet.6b00306. DOI
Svec J. Necas M. Sindelar V. Angew. Chem., Int. Ed. 2010;49:2378. doi: 10.1002/anie.201000420. PubMed DOI
Lizal T. Sindelar V. Isr. J. Chem. 2018;58:326. doi: 10.1002/ijch.201700111. DOI
Havel V. Sindelar V. ChemPlusChem. 2015;80:1601. doi: 10.1002/cplu.201500345. PubMed DOI
Nolan S. P. Acc. Chem. Res. 2011;44:91. doi: 10.1021/ar1000764. PubMed DOI
Marion N. Ramon R. S. Nolan S. P. J. Am. Chem. Soc. 2009;131:448. doi: 10.1021/ja809403e. PubMed DOI
Veenboer R. M. P. Collado A. Dupuy S. Lebl T. Falivene L. Cavallo L. Cordes D. B. Slawin A. M. Z. Cazin C. S. J. Nolan S. P. Inner-Sphere versus Outer-Sphere Coordination of BF4− in a NHC–Gold(I) Complex. Organometallics. 2017;36:2861. doi: 10.1021/acs.organomet.7b00345. DOI
Gatto M. Belanzoni P. Belpassi L. Biasiolo L. Del Zotto A. Tarantelli F. Zuccaccia D. Solvent-, Silver-, and Acid-Free NHC–Au–X Catalyzed Hydration of Alkynes. The Pivotal Role of the Counterion. ACS Catal. 2016;6:7363. doi: 10.1021/acscatal.6b01626. DOI