Broad-Host Dissemination of Plasmids Coharboring the fos Operon for Fructooligosaccharide Metabolism with Antibiotic Resistance Genes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37578374
PubMed Central
PMC10467340
DOI
10.1128/aem.00371-23
Knihovny.cz E-zdroje
- Klíčová slova
- Escherichia coli, MinION, scFOS, sequencing,
- MeSH
- antibakteriální látky * farmakologie MeSH
- antibiotická rezistence MeSH
- beta-laktamasy genetika MeSH
- Enterobacteriaceae MeSH
- Escherichia coli MeSH
- infekce vyvolané Escherichia coli * mikrobiologie MeSH
- koně MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- operon MeSH
- plazmidy genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky * MeSH
- beta-laktamasy MeSH
- fructooligosaccharide MeSH Prohlížeč
The fos operon encoding short-chain fructooligosaccharide (scFOS) utilization enables bacteria of the family Enterobacteriaceae to grow and be sustained in environments where they would struggle to survive. Despite several cases of the detection of the fos operon in isolates of avian and equine origins, its global distribution in bacterial genomes remains unknown. The presence of the plasmid-harbored fos operon among resistant bacteria may promote the spread of antibiotic resistance. A collection of 11,538 antimicrobial-resistant Enterobacteriaceae isolates from various sources was screened for the fosT gene encoding the scFOS transporter. Out of 307 fosT-positive isolates, 80% of them originated from sources not previously linked to fosT (humans, wastewater, and animals). The chromosomally harbored fos operon was detected in 163/237 isolates subjected to whole-genome sequencing. In the remaining 74 isolates, the operon was carried by plasmids. Further analyses focusing on the isolates with a plasmid-harbored fos operon showed that the operon was linked to various incompatibility (Inc) groups, including the IncHI1, IncF-type, IncK2, IncI1, and IncY families. Long-read sequencing of representative plasmids showed the colocalization of fos genes with antibiotic resistance genes (ARGs) in IncHI1 (containing a multidrug resistance region), IncK2 (blaTEM-1A), IncI1 [sul2 and tet(A)], and IncY [aadA5, dfrA17, sul2, and tet(A)] plasmids, while IncF-type plasmids had no ARGs but coharbored virulence-associated genes. Despite the differences in the locations and structures of the fos operons, all isolates except one were proven to utilize scFOSs. In this study, we show that the fos operon and its spread are not strictly bound to one group of plasmids, and therefore, it should not be overlooked. IMPORTANCE It was believed that members of the family Enterobacteriaceae are unable to grow under conditions with short-chain fructooligosaccharides as the only source of carbon. Nevertheless, the first Escherichia coli isolate from chicken intestine was able to utilize these sugars owing to the chromosomally harbored fos operon. Studies on E. coli isolates from horses discovered the horizontal transfer of the fos operon on IncHI1 plasmids along with genes for antibiotic resistance. The first plasmid detected was pEQ1, originating from the feces of a hospitalized horse in the Czech Republic. Follow-up studies also revealed the dissemination of the IncHI1 plasmid-harbored fos operon in the Netherlands, Germany, Denmark, and France among healthy horses. Despite several cases of detection of the fos operon, its global distribution in bacterial genomes remains unknown. The fos operon possibly plays a role in the adaptation of plasmids among resistant bacteria and therefore may promote the spread of antibiotic resistance.
CEITEC University of Veterinary Sciences Brno Brno Czech Republic
Faculty of Medicine Biomedical Center Charles University Pilsen Czech Republic
Structural Biology Brussels Vrije Universiteit Brussel Brussels Belgium
Zobrazit více v PubMed
Grand E, Respondek F, Martineau C, Detilleux J, Bertrand G. 2013. Effects of short-chain fructooligosaccharides on growth performance of preruminant veal calves. J Dairy Sci 96:1094–1101. doi:10.3168/jds.2011-4949. PubMed DOI
Pokusaeva K, Fitzgerald GF, van Sinderen D. 2011. Carbohydrate metabolism in bifidobacteria. Genes Nutr 6:285–306. doi:10.1007/s12263-010-0206-6. PubMed DOI PMC
Bornet FRJ, Brouns F, Tashiro Y, Duvillier V. 2002. Nutritional aspects of short-chain fructooligosaccharides: natural occurrence, chemistry, physiology and health implications. Dig Liver Dis 34:S111–S120. doi:10.1016/S1590-8658(02)80177-3. PubMed DOI
Liu F, Li P, Chen M, Luo Y, Prabhakar M, Zheng H, He Y, Qi Q, Long H, Zhang Y, Sheng H, Zhou H. 2017. Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase Bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population. Sci Rep 7:11789. doi:10.1038/s41598-017-10722-2. PubMed DOI PMC
Chouikha I, Germon P, Brée A, Gilot P, Moulin-Schouleur M, Schouler C. 2006. A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence. J Bacteriol 188:977–987. doi:10.1128/JB.188.3.977-987.2006. PubMed DOI PMC
Porcheron G, Chanteloup NK, Trotereau A, Brée A, Schouler C. 2012. Effect of fructooligosaccharide metabolism on chicken colonization by an extra-intestinal pathogenic Escherichia coli strain. PLoS One 7:e35475. doi:10.1371/journal.pone.0035475. PubMed DOI PMC
Dolejska M, Villa L, Minoia M, Guardabassi L, Carattoli A. 2014. Complete sequences of IncHI1 plasmids carrying blaCTX-M-1 and qnrS1 in equine Escherichia coli provide new insights into plasmid evolution. J Antimicrob Chemother 69:2388–2393. doi:10.1093/jac/dku172. PubMed DOI
Valcek A, Sismova P, Nesporova K, Overballe-Petersen S, Bitar I, Jamborova I, Kant A, Hrabak J, Wagenaar JA, Madec J-Y, Damborg P, van Duijkeren E, Ewers C, Hordijk J, Hasman H, Brouwer MSM, Dolejska M. 2021. Horsing around: Escherichia coli ST1250 of equine origin harboring epidemic IncHI1/ST9 plasmid with blaCTX-M-1 and an operon for short-chain fructooligosaccharide metabolism. Antimicrob Agents Chemother 65:e02556-20. doi:10.1128/AAC.02556-20. PubMed DOI PMC
de Lagarde M, Larrieu C, Praud K, Lallier N, Trotereau A, Sallé G, Fairbrother JM, Schouler C, Doublet B. 2020. Spread of multidrug-resistant IncHI1 plasmids carrying ESBL gene blaCTX-M-1 and metabolism operon of prebiotic oligosaccharides in commensal Escherichia coli from healthy horses, France. Int J Antimicrob Agents 55:105936. doi:10.1016/j.ijantimicag.2020.105936. PubMed DOI
Partridge SR, Kwong SM, Firth N, Jensen SO. 2018. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 31:e00088-17. doi:10.1128/CMR.00088-17. PubMed DOI PMC
Respondek F, Goachet AG, Julliand V. 2008. Effects of dietary short-chain fructooligosaccharides on the intestinal microflora of horses subjected to a sudden change in diet. J Anim Sci 86:316–323. doi:10.2527/jas.2006-782. PubMed DOI
Respondek F, Myers K, Smith TL, Wagner A, Geor RJ. 2011. Dietary supplementation with short-chain fructo-oligosaccharides improves insulin sensitivity in obese horses. J Anim Sci 89:77–83. doi:10.2527/jas.2010-3108. PubMed DOI
Literak I, Dolejska M, Rybarikova J, Cizek A, Strejckova P, Vyskocilova M, Friedman M, Klimes J. 2009. Highly variable patterns of antimicrobial resistance in commensal Escherichia coli isolates from pigs, sympatric rodents, and flies. Microb Drug Resist 15:229–237. doi:10.1089/mdr.2009.0913. PubMed DOI
Cormier AC, Chalmers G, Zamudio R, Mulvey MR, Mather AE, Boerlin P. 2022. Diversity of blaCTX-M-1-carrying plasmids recovered from Escherichia coli isolated from Canadian domestic animals. PLoS One 17:e0264439. doi:10.1371/journal.pone.0264439. PubMed DOI PMC
Palomino A, Gewurz D, DeVine L, Zajmi U, Moralez J, Abu-Rumman F, Smith RP, Lopatkin AJ. 2023. Metabolic genes on conjugative plasmids are highly prevalent in Escherichia coli and can protect against antibiotic treatment. ISME J 17:151–162. doi:10.1038/s41396-022-01329-1. PubMed DOI PMC
Caza M, Garénaux A, Lépine F, Dozois CM. 2015. Catecholate siderophore esterases Fes, IroD and IroE are required for salmochelins secretion following utilization, but only IroD contributes to virulence of extra-intestinal pathogenic Escherichia coli. Mol Microbiol 97:717–732. doi:10.1111/mmi.13059. PubMed DOI
Gérard F, Pradel N, Wu L-F. 2005. Bactericidal activity of colicin V is mediated by an inner membrane protein, SdaC, of Escherichia coli. J Bacteriol 187:1945–1950. doi:10.1128/JB.187.6.1945-1950.2005. PubMed DOI PMC
Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, Mevius DJ, Hordijk J. 2018. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 73:1121–1137. doi:10.1093/jac/dkx488. PubMed DOI
Jiang N, Dillon FM, Silva A, Gomez-Cano L, Grotewold E. 2021. Rhamnose in plants—from biosynthesis to diverse functions. Plant Sci 302:110687. doi:10.1016/j.plantsci.2020.110687. PubMed DOI
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021. PubMed DOI PMC
Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 3:e000132. doi:10.1099/mgen.0.000132. PubMed DOI PMC
Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. doi:10.1371/journal.pcbi.1005595. PubMed DOI PMC
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 37:540–546. doi:10.1038/s41587-019-0072-8. PubMed DOI
Vaser R, Sović I, Nagarajan N, Šikić M. 2017. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27:737–746. doi:10.1101/gr.214270.116. PubMed DOI PMC
Lee JY, Kong M, Oh J, Lim J, Chung SH, Kim J-M, Kim J-S, Kim K-H, Yoo J-C, Kwak W. 2021. Comparative evaluation of Nanopore polishing tools for microbial genome assembly and polishing strategies for downstream analysis. Sci Rep 11:20740. doi:10.1038/s41598-021-00178-w. PubMed DOI PMC
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. doi:10.1371/journal.pone.0112963. PubMed DOI PMC
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324. PubMed DOI PMC
Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q. 2005. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33:D325–D328. doi:10.1093/nar/gki008. PubMed DOI PMC
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. doi:10.1128/AAC.02412-14. PubMed DOI PMC
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF, Duggett NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L, Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. 2020. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75:3491–3500. doi:10.1093/jac/dkaa345. PubMed DOI PMC
Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36. doi:10.1093/nar/gkj014. PubMed DOI PMC
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH. 2015. CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226. doi:10.1093/nar/gku1221. PubMed DOI PMC
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. doi:10.1093/bioinformatics/btv421. PubMed DOI PMC
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:10.1093/bioinformatics/btu153. PubMed DOI
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446. PubMed DOI
Letunic I, Bork P. 2007. Interactive Tree of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128. doi:10.1093/bioinformatics/btl529. PubMed DOI
Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402. doi:10.1186/1471-2164-12-402. PubMed DOI PMC
Gilchrist CLM, Chooi Y-H. 2021. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37:2473–2475. doi:10.1093/bioinformatics/btab007. PubMed DOI