Considerations for protein and amino acids in standardized reference diet for parthenogenetic marbled crayfish Procambarus virginalis model organism
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018099
Ministry of Education, Youth and Sports of the Czech Republic
19-04431S
Czech Science Foundation
PubMed
39013879
PubMed Central
PMC11253003
DOI
10.1038/s41598-024-58304-3
PII: 10.1038/s41598-024-58304-3
Knihovny.cz E-zdroje
- Klíčová slova
- Amino acids, Ideal protein, Laboratory diet, Laboratory model, Nutritional control,
- MeSH
- aminokyseliny * metabolismus MeSH
- dieta veterinární MeSH
- dietní proteiny metabolismus MeSH
- fyziologie výživy zvířat MeSH
- krmivo pro zvířata * analýza MeSH
- partenogeneze MeSH
- severní raci * fyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny * MeSH
- dietní proteiny MeSH
The concept of a standardized reference diet (SRD) is used in laboratory model organisms to ensure nutritional control between studies and laboratories. Although models using the genetically identical, all female parthenogenetic marbled crayfish (Procambarus virginalis) are growing in popularity, research into nutrition in this species still has many knowledge gaps. To fast track the development of a SRD in terms of protein and amino acids (SRDprotein) for this species, we first analyzed the composition of its body amino acids to determine the ideal protein concept (IPC) of indispensable amino acids in wild-caught P. virginalis (which had an unusually high preponderance of leucine and arginine). Then, we strategically evaluated three common clusters of types of fish feed: (1) ornamental fish feed (SER) fortified with a naturally occurring alga (Spirulina). This type of feed was protein-high in arginine and leucine (SER + SPI) that fulfils the species' IPC for iso-protein (~ 40%), iso-phosphorus (~ 0.8%) and near iso-energetic (~ 475 kcal 100 g-1); (2) freeze-dried live feed consisting of chironomid larvae (CHI) fortified with Spirulina (CHI + SPI) that fulfils the IPC for iso-protein (~ 46%), iso-phosphorus (~ 0.7%) and near iso-energetic (~ 405 kcal 100 g-1); and (3) a commercially standardized 'starter diet' for carnivorous fish larvae (FISH) and post-larval shrimps (SHRIMP) with iso-protein (~ 56%) and iso-phosphorus (~ 1.6%). A total of six diets, embracing a diverse range of proteinaceous feeds, were used in a 100-day ad libitum feeding and growth trial. The FISH group outperformed all the other groups (p < 0.05) and our exploratory multivariate analysis revealed an ideal demand of > 44% protein (tailored to deliver high arginine 3% and leucine 4%, followed by the usual lysine > 3.5% and methionine 1.2%) but also the lowest carbohydrate level (21%). For SRDprotein, our findings show that the FISH diet is ideal and suggest the possibilities of using a CHI + SPI diet for further optimization (more economic use of protein and phosphorus).
Zobrazit více v PubMed
Ankeny RA, Leonelli S. Model Organisms. Cambridge University Press; 2020.
Watts SA, Powell M, D'Abramo LR. Fundamental approaches to the study of zebrafi sh nutrition. Ilar J. 2012;53:144–160. doi: 10.1093/ilar.53.2.144. PubMed DOI PMC
Watts SA, D'Abramo LR. Standardized reference diets for Zebrafish: Addressing nutritional control in experimental methodology. Annu. Rev. Nutr. 2021;41:511–527. doi: 10.1146/annurev-nutr-120420-034809. PubMed DOI PMC
Lawrence C, et al. The challenges of implementing pathogen control strategies for fishes used in biomedical research. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2012;155:160–166. doi: 10.1016/j.cbpc.2011.06.007. PubMed DOI PMC
Reeves PG, Nielsen FH, Fahey GC., Jr AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993;123:1939–1951. doi: 10.1093/jn/123.11.1939. PubMed DOI
Watts SA, Lawrence C, Powell M, D'Abramo LR. the vital relationship between nutrition and health in Zebrafish. Zebrafish. 2016;13:S72–S76. doi: 10.1089/zeb.2016.1299. PubMed DOI PMC
Das K, Roy K, Mráz J, Buřič M, Kouba A, et al. Considerations for fatty acids in standardized reference diet for parthenogenetic marbled crayfish Procambarus virginalis model organism. Sci. Rep. 2024 doi: 10.1038/s41598-024-66268-7. PubMed DOI PMC
Dabrowski K, Guderley H. Fish Nutrition. Elsevier; 2003. pp. 309–365.
Corral-Rosales DC, Palacios E, Ricque-Marie D, Cruz-Suárez LE. Enhancement of reproductive performance in shrimp Litopenaeus vannamei (Boone, 1931) by supplementation of Ulva clathrata meal in maturation diet in two commercial hatcheries. Aquac Res. 2018;49:1053–1059. doi: 10.1111/are.13554. DOI
Jobling M. Fish nutrition research: Past, present and future. Aquacult Int. 2016;24:767–786. doi: 10.1007/s10499-014-9875-2. DOI
Fowler LA, Williams MB, Dabramo LR, Watts SA. The Zebrafish in Biomedical Research. Elsevier; 2020. pp. 379–401.
Žák J, Roy K, Dyková I, Mráz J, Reichard M. Starter feed for carnivorous species as a practical replacement of bloodworms for a vertebrate model organism in ageing, the turquoise killifish Nothobranchius furzeri. J. Fish Biol. 2022;100:894–908. doi: 10.1111/jfb.15021. PubMed DOI
Lyko F. The marbled crayfish (Decapoda: Cambaridae) represents an independent new species. Zootaxa. 2017;4363:544–552. doi: 10.11646/zootaxa.4363.4.6. PubMed DOI
Hossain MS, Patoka J, Kouba A, Buric M. Clonal crayfish as biological model: A review on marbled crayfish. Biologia. 2018;73:841–855. doi: 10.2478/s11756-018-0098-2. DOI
Maiakovska O, et al. Genome analysis of the monoclonal marbled crayfish reveals genetic separation over a short evolutionary timescale. Commun. Biol. 2021;4:74. doi: 10.1038/s42003-020-01588-8. PubMed DOI PMC
Gutekunst J, et al. Phylogeographic reconstruction of the marbled crayfish origin. Commun. Biol. 2021;4:1096. doi: 10.1038/s42003-021-02609-w. PubMed DOI PMC
Kouba A, et al. Survival, growth, and reproduction: Comparison of marbled crayfish with four prominent crayfish invaders. Biology. 2021;10:422. doi: 10.3390/biology10050422. PubMed DOI PMC
Veselý L, et al. Trophic niches of three sympatric invasive crayfish of EU concern. Hydrobiologia. 2021;848:727–737. doi: 10.1007/s10750-020-04479-5. DOI
Vogt G. Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: Insights from clonal, invasive, polyploid, and domesticated animals. Environ. Epigenet. 2017;3:dvx002. doi: 10.1093/eep/dvx002. PubMed DOI PMC
Vogt G. Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives. J. Biosci. 2018;43:189–223. doi: 10.1007/s12038-018-9741-x. PubMed DOI
Lunda R, Roy K, Dvorak P, Kouba A, Mraz J. Recycling biofloc waste as novel protein source for crayfish with special reference to crayfish nutritional standards and growth trajectory. Sci. Rep. 2020 doi: 10.1038/s41598-020-76692-0. PubMed DOI PMC
Tönges S, et al. Evaluating invasive marbled crayfish as a potential livestock for sustainable aquaculture. Front. Ecol. Evol. 2021;9:540. doi: 10.3389/fevo.2021.651981. DOI
Vogt G, Tolley L. Brood care in freshwater crayfish and relationship with the offspring's sensory deficiencies. J. Morphol. 2004;262:566–582. doi: 10.1002/jmor.10169. PubMed DOI
Hossain MS, et al. A combination of six psychoactive pharmaceuticals at environmental concentrations alter the locomotory behavior of clonal marbled crayfish. Sci. Total Environ. 2021;751:141383. doi: 10.1016/j.scitotenv.2020.141383. PubMed DOI
Kubec J, et al. Oxazepam alters the behavior of crayfish at diluted concentrations, venlafaxine does not. Water. 2019;11:196. doi: 10.3390/w11020196. DOI
Cuzon, G. et al.Proceedings of the World Mariculture Society. 410–423 (Wiley Online Library).
Phonsiri K, Mavichak R, Panserat S, Boonanuntanasarn S. Differential responses of hepatopancreas transcriptome between fast and slow growth in giant freshwater prawns (Macrobrachium rosenbergii) fed a plant-based diet. Sci. Rep. 2024;14:4957. doi: 10.1038/s41598-024-54349-6. PubMed DOI PMC
e Silva EDO, et al. Effects of shrimp consumption on plasma lipoproteins. Am. J. Clin. Nutr. 1996;64:712–717. doi: 10.1093/ajcn/64.5.712. PubMed DOI
D'ABRAMO, L. R. Advances in Tropical Aquaculture, Workshop at Tahiti, French Polynesia, 20 Feb-4 Mar 1989.
Jover M, Fernández-Carmona J, Del Río M, Soler M. Effect of feeding cooked-extruded diets, containing different levels of protein, lipid and carbohydrate on growth of red swamp crayfish (Procambarus clarkii) Aquaculture. 1999;178:127–137. doi: 10.1016/S0044-8486(99)00119-2. DOI
Davis DA, Robinson EH. Estimation of the dietary lipid requirement level of the white crayfish Procambarus acutus acutus. J. World Aquac. Soc. 1986;17:37–43. doi: 10.1111/j.1749-7345.1986.tb00552.x. DOI
Zhou QC, et al. Dietary arginine requirement of juvenile Pacific white shrimp. Aquaculture. 2012;364:252–258. doi: 10.1016/j.aquaculture.2012.08.020. DOI
Alam MS, et al. Dietary arginine requirement of juvenile kuruma shrimp Marsupenaeus japonicus (Bate) Aquac. Res. 2004;35:842–849. doi: 10.1111/j.1365-2109.2004.01075.x. DOI
Paddon-Jones D, Børsheim E, Wolfe RR. Potential ergogenic effects of arginine and creatine supplementation. J. Nutr. 2004;134:2888S–2894S. doi: 10.1093/jn/134.10.2888S. PubMed DOI
Campbell BI, La Bounty PM, Roberts M. The ergogenic potential of arginine. J. Int. Soc. Sports Nutr. 2004;1:35. doi: 10.1186/1550-2783-1-2-35. PubMed DOI PMC
Roy K, Das K, Petraskova E, Kouba A. Protein from whole-body crayfish homogenate may be a high supplier of leucine or branched-chain amino acids–A call for validation on genus Procambarus sp. Food Chem. 2023;427:136728. doi: 10.1016/j.foodchem.2023.136728. PubMed DOI
Dooley P, Long B, West J. Amino acids in haemolymph, single fibres and whole muscle from the claw of freshwater crayfish acclimated to different osmotic environments. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2000;127:155–165. doi: 10.1016/S1095-6433(00)00247-6. PubMed DOI
Hackman R. Studies on chitin IV. The occurrence of complexes in which chitin and protein are covalently linked. Aust. J. Biol. Sci. 1960;13:568–577. doi: 10.1071/BI9600568. DOI
Horst MN. Association between chitin synthesis and protein-synthesis in the shrimp Penaeus vannamei. J. Crustacean. Biol. 1989;9:257–265. doi: 10.2307/1548505. DOI
Horst MN. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs. J. Exp. Zool. 1990;256:242–254. doi: 10.1002/jez.1402560303. PubMed DOI
Rollin X, Mambrini M, Abboudi T, Larondelle Y, Kaushik SJ. The optimum dietary indispensable amino acid pattern for growing Atlantic salmon (Salmo salar L.) fry. Brit. J. Nutr. 2003;90:865–876. doi: 10.1079/BJN2003973. PubMed DOI
Kaushik SJ, Seiliez I. Protein and amino acid nutrition and metabolism in fish: Current knowledge and future needs. Aquac. Res. 2010;41:322–332. doi: 10.1111/j.1365-2109.2009.02174.x. DOI
Li, X., Han, T., Zheng, S. & Wu, G. Nutrition and functions of amino acids in aquatic crustaceans. Amino Acids in Nutrition and Health: Amino Acids in the Nutrition of Companion, Zoo and Farm Animals. 169–198 (2021). PubMed
Bosch OJ, Sartori SB, Singewald N, Neumann ID. Extracellular amino acid levels in the paraventricular nucleus and the central amygdala in high-and low-anxiety dams rats during maternal aggression: Regulation by oxytocin. Stress. 2007;10:261–270. doi: 10.1080/10253890701223197. PubMed DOI
Brown R, King MG. Arginine vasotocin and aggression in rats. Peptides. 1984;5:1135–1138. doi: 10.1016/0196-9781(84)90179-7. PubMed DOI
Baker DH. Comparative species utilization and toxicity of sulfur amino acids. J. Nutr. 2006;136:1670S–1675S. doi: 10.1093/jn/136.6.1670S. PubMed DOI
Wu G, Li P. The, “ideal protein” concept is not ideal in animal nutrition. Exp. Biol. Med. 2022;247:1191–1201. doi: 10.1177/15353702221082658. PubMed DOI PMC
Bureau, D. P., Kaushik, S. J. & Cho, C. Y. Bioenergetics. Fish nutrition. 1–59 (2003).
Crane DP, Ogle DH, Shoup DE. Use and misuse of a common growth metric: Guidance for appropriately calculating and reporting specific growth rate. Rev. Aquac. 2020;12:1542–1547. doi: 10.1111/raq.12396. DOI
Sarkar UK, et al. Minnows may be more reproductively resilient to climatic variability than anticipated: Synthesis from a reproductive vulnerability assessment of Gangetic pool barbs (Puntius sophore) Ecol. Indic. 2019;105:727–736. doi: 10.1016/j.ecolind.2019.03.037. DOI