Survival, Growth, and Reproduction: Comparison of Marbled Crayfish with Four Prominent Crayfish Invaders

. 2021 May 10 ; 10 (5) : . [epub] 20210510

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34068504

Grantová podpora
19-04431S Czech Science Foundation
Excelencia project P12-RNM 936 Regional Government of Andalusia
SS02030018 Technology Agency of the Czech Republic

Biological invasions are increasingly recognized ecological and economic threats to biodiversity and are projected to increase in the future. Introduced freshwater crayfish in particular are protruding invaders, exerting tremendous impacts on native biodiversity and ecosystem functioning, as exemplified by the North American spiny-cheek, signal and red swamp crayfish as well as the Australian common yabby. The marbled crayfish is among the most outstanding freshwater crayfish invaders due to its parthenogenetic reproduction combined with early maturation and high fecundity. As their introduced ranges expand, their sympatric populations become more frequent. The question of which species and under what circumstances will dominate in their introduced communities is of great interest to biodiversity conservation as it can offer valuable insights for understanding and prioritization of management efforts. In order to examine which of the aforementioned species may be more successful as an invader, we conducted a set of independent trials evaluating survival, growth, claw injury, and reproduction using single-species stocks (intraspecific interactions) and mixed stocks (interspecific interactions) of marbled crayfish vs. other crayfish invaders since the onset of exogenous feeding. In both single and mixed stocks, red swamp crayfish and yabby grew faster than marbled crayfish, while marbled crayfish were superior to both spiny-cheek and signal crayfish in terms of growth. With the exception of signal crayfish, the faster-growing species consistently reached a higher survival rate. The faster-growing species tended to negatively impair smaller counterparts by greater claw injury, delayed maturation, and reduced fecundity. Only marbled crayfish laid eggs as early as 14 weeks in this study, which is earlier than previously reported in the literature. Thus, the success of marbled crayfish among invasive crayfish is significantly driven by relatively fast growth as well as an early and frequent reproduction. These results shed light on how interactions between invasive populations can unfold when their expansion ranges overlap in the wild, thereby contributing to the knowledge base on the complex population dynamics between existing and emerging invasive species.

Zobrazit více v PubMed

Pyšek P., Bacher S., Chytrý M., Jarošík V., Wild J., Celesti-Grapow L., Gassó N., Kenis M., Lambdon P.W., Nentwig W., et al. Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Glob. Ecol. Biogeogr. 2010;19:317–331. doi: 10.1111/j.1466-8238.2009.00514.x. DOI

Hanafiah M.M., Leuven R.S.E.W., Sommerwerk N., Tockner K., Huijbregts M.A.J. Including the introduction of exotic species in life cycle impact assessment: The case of inland shipping. Environ. Sci. Technol. 2013;47:13934–13940. doi: 10.1021/es403870z. PubMed DOI

Seebens H., Essl F., Dawson W., Fuentes N., Moser D., Pergl J., Pyšek P., van Kleunen M., Weber E., Winter M. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 2015;21:4128–4140. doi: 10.1111/gcb.13021. PubMed DOI

Seebens H., Blackburn T.M., Dyer E.E., Genovesi P., Hulme P.E., Jeschke J.M., Pagad S., Pyšek P., Winter M., Arianoutsou M. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:14435. doi: 10.1038/ncomms14435. PubMed DOI PMC

Cohen A.N., Carlton J.T. Accelerating invasion rate in a highly invaded estuary. Science. 1998;279:555–558. doi: 10.1126/science.279.5350.555. PubMed DOI

Ricciardi A., Blackburn T.M., Carlton J.T., Dick J.T., Hulme P.E., Iacarella J.C., Jeschke J.M., Liebhold A.M., Lockwood J.L., MacIsaac H.J. Invasion science: A horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 2017;32:464–474. doi: 10.1016/j.tree.2017.03.007. PubMed DOI

Patoka J., Prabowo R.E., Petrtýl M., Reynolds J.D., Kuříková P., Zámečníková-Wanma B.P., Kalous L. Marine hitchhikers: A preliminary study on invertebrates unintentionally transported via the international pet trade. NeoBiota. 2020;61:33. doi: 10.3897/neobiota.61.57682. DOI

Jeschke J.M., Pyšek P. Tens Rule. In: Jeschke J.M., Heger T., editors. Invasion Biology: Hypotheses and Evidence. CAB International; Wallingford, UK: 2018. pp. 124–132.

Allendorf F.W., Lundquist L.L. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 2003;17:24–30. doi: 10.1046/j.1523-1739.2003.02365.x. DOI

Cuthbert R.N., Pattison Z., Taylor N.G., Verbrugge L., Diagne C., Ahmed D.A., Leroy B., Angulo E., Briski E., Capinha C., et al. Global economic costs of aquatic invasive alien species. Sci. Total Environ. 2021;775:145238. doi: 10.1016/j.scitotenv.2021.145238. PubMed DOI

Diagne C., Leroy B., Vaissière A.-C., Gozlan R.E., Roiz D., Jarić I., Salles J.-M., Bradshaw C.J., Courchamp F. High and rising economic costs of biological invasions worldwide. Nature. 2021:1–6. doi: 10.1038/s41586-021-03405-6. PubMed DOI

Strayer D.L. Alien species in fresh waters: Ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 2010;55:152–174. doi: 10.1111/j.1365-2427.2009.02380.x. DOI

Catford J.A., Vesk P.A., Richardson D.M., Pysek P. Quantifying levels of biological invasion: Towards the objective classification of invaded and invasible ecosystems. Glob. Chang. Biol. 2012;18:44–62. doi: 10.1111/j.1365-2486.2011.02549.x. DOI

Simberloff D., Martin J.-L., Genovesi P., Maris V., Wardle D.A., Aronson J., Courchamp F., Galil B., García-Berthou E., Pascal M. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013;28:58–66. doi: 10.1016/j.tree.2012.07.013. PubMed DOI

Seebens H., Bacher S., Blackburn T.M., Capinha C., Dawson W., Dullinger S., Genovesi P., Hulme P.E., van Kleunen M., Kühn I. Projecting the continental accumulation of alien species through to 2050. Glob. Chang. Biol. 2020;27:970–982. doi: 10.1111/gcb.15333. PubMed DOI

Russell J.C., Sataruddin N.S., Heard A.D. Over-invasion by functionally equivalent invasive species. Ecology. 2014;95:2268–2276. doi: 10.1890/13-1672.1. PubMed DOI

Copp G.H., Fox M.G. Can invasiveness in freshwater fishes be predicted from life-history traits? Front. Ecol. Evol. 2020;8:408. doi: 10.3389/fevo.2020.605287. DOI

Fox M., Vila-Gispert A., Copp G. Life-history traits of introduced Iberian pumpkinseed Lepomis gibbosus relative to native populations. Can differences explain colonization success? J. Fish Biol. 2007;71:56–69. doi: 10.1111/j.1095-8649.2007.01683.x. DOI

Crandall K.A., De Grave S. An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. J. Crustacean Biol. 2017;37:615–653. doi: 10.1093/jcbiol/rux070. DOI

Momot W.T. Redefining the role of crayfish in aquatic ecosystems. Rev. Fish Sci. 1995;3:33–63. doi: 10.1080/10641269509388566. DOI

Lipták B., Veselý L., Ercoli F., Bláha M., Buřič M., Ruokonen T., Kouba A. Trophic role of marbled crayfish in a lentic freshwater ecosystem. Aquat. Invasions. 2019;14:299–309. doi: 10.3391/ai.2019.14.2.09. DOI

Lodge D.M., Deines A., Gherardi F., Yeo D.C.J., Arcella T., Baldridge A.K., Barnes M.A., Chadderton W.L., Feder J.L., Gantz C.A., et al. Global Introductions of Crayfishes: Evaluating the Impact of Species Invasions on Ecosystem Services. Annu. Rev. Ecol. Evol. Syst. 2012;43:449–472. doi: 10.1146/annurev-ecolsys-111511-103919. DOI

Gherardi F., Aquiloni L., Dieguez-Uribeondo J., Tricarico E. Managing invasive crayfish: Is there a hope? Aquat. Sci. 2011;73:185–200. doi: 10.1007/s00027-011-0181-z. DOI

Holdich D.M., Reynolds J.D., Souty-Grosset C., Sibley P.J. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst. 2009;394–395:11. doi: 10.1051/kmae/2009025. DOI

Kouba A., Petrusek A., Kozák P. Continental-wide distribution of crayfish species in Europe: Update and maps. Knowl. Manag. Aquat. Ecosyst. 2014;413:5. doi: 10.1051/kmae/2014007. DOI

EU Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. Eur. Union. 2014;57:35.

EU Commission Implementing Regulation (EU) 2016/1141 of 13 July 2016 adopting a list of invasive alien species of Union concern pursuant to Regulation (EU) No 1143/2014 of the European Parliament and of the Council. Off. J. Eur. Union. 2016 Jul 13;189:4–8.

Svoboda J., Mrugała A., Kozubíková-Balcarová E., Petrusek A. Hosts and transmission of the crayfish plague pathogen Aphanomyces astaci: A review. J. Fish Dis. 2017;40:127–140. doi: 10.1111/jfd.12472. PubMed DOI

Vorburger C., Ribi G. Aggression and competition for shelter between a native and an introduced crayfish in Europe. Freshw. Biol. 1999;42:111–119. doi: 10.1046/j.1365-2427.1999.00465.x. DOI

Kouba A., Tíkal J., Císař P., Veselý L., Fořt M., Příborský J., Patoka J., Buřič M. The significance of droughts for hyporheic dwellers: Evidence from freshwater crayfish. Sci. Rep. 2016;6:26569. doi: 10.1038/srep26569. PubMed DOI PMC

Kozák P., Buřič M., Policar T., Hamáčková J., Lepičová A. The effect of inter-and intra-specific competition on survival and growth rate of native juvenile noble crayfish Astacus astacus and alien spiny-cheek crayfish Orconectes limosus. Hydrobiologia. 2007;590:85–94. doi: 10.1007/s10750-007-0760-0. DOI

Souty-Grosset C., Holdich D.M., Noël P.Y., Reynolds J., Haffner P. Atlas of Crayfish in Europe. Muséum National d’Histoire Naturelle; Paris, France: 2006.

Lodge D.M., Taylor C.A., Holdich D.M., Skurdal J. Nonindigenous crayfishes threaten North American freshwater biodiversity: Lessons from Europe. Fisheries. 2000;25:7–20. doi: 10.1577/1548-8446(2000)025<0007:NCTNAF>2.0.CO;2. DOI

Weiperth A., Bláha M., Szajbert B., Seprős R., Bányai Z., Patoka J., Kouba A. Hungary: A European hotspot of non-native crayfish biodiversity. Knowl. Manag. Aquat. Ecosyst. 2020;421:43. doi: 10.1051/kmae/2020035. DOI

Weiperth A., Gál B., Kuříková P., Bláha M., Kouba A., Patoka J. Cambarellus patzcuarensis in Hungary: The first dwarf crayfish established outside of North America. Biologia. 2017;72:1529–1532. doi: 10.1515/biolog-2017-0159. DOI

Szendőfi B., Bérces S., Csányi B., Gábris V., Gál B., Gönye Z., Répás E., Seprős R., Tóth B., Kouba A., et al. Egzotikus halfajok és decapodák a Barát-és Dera-patakban, valamint a torkolatuk dunai élőhelyein (Occurrence of exotic fish and crayfish species in Barát and Dera creeks and their adjacent section of the River Danube) Pisces Hung. 2018;12:47–51.

Grandjean F., Collas M., Uriarte M., Rousset M. First record of a marbled crayfish Procambarus virginalis (Lyko, 2017) population in France. Bioinvasions Rec. 2021;10 doi: 10.3391/bir.2021.10.2.12. in press. DOI

Jackson M.C., Jones T., Milligan M., Sheath D., Taylor J., Ellis A., England J., Grey J. Niche differentiation among invasive crayfish and their impacts on ecosystem structure and functioning. Freshw. Biol. 2014;59:1123–1135. doi: 10.1111/fwb.12333. DOI

Veselý L., Buřič M., Kouba A. Hardy exotics species in temperate zone: Can “warm water” crayfish invaders establish regardless of low temperatures? Sci. Rep. 2015;5:16340. doi: 10.1038/srep16340. PubMed DOI PMC

Veselý L., Ruokonen T.J., Weiperth A., Kubec J., Szajbert B., Guo W., Ercoli F., Bláha M., Buřič M., Hämäläinen H. Trophic niches of three sympatric invasive crayfish of EU concern. Hydrobiologia. 2021;848:727–737. doi: 10.1007/s10750-020-04479-5. DOI

Vogt G. Biology, Eecology, Evolution, Systematics and Utilization of the Parthenogenetic Marbled crayfish, Procambarus virginalis. In: Ribeiro F.B., editor. Crayfish: Evolution, Habitat and Conservation Strategies. Nova Science Publishers; Hauppauge, NY, USA: 2020. pp. 137–227.

Kawai T., Kouba A. A description of postembryonic development of Astacus astacus and Pontastacus leptodactylus. Freshw. Crayfish. 2020;25:103–116. doi: 10.5869/fc.2020.v25-1.103. DOI

Kouba A., Hamáčková J., Buřič M., Policar T., Kozak P. Use of three forms of decapsulated Artemia cysts as food for juvenile noble crayfish (Astacus astacus) Czech J. Anim. Sci. 2011;56:114–118. doi: 10.17221/1301-CJAS. DOI

Veselý L., Hrbek V., Kozák P., Buřič M., Sousa R., Kouba A. Salinity tolerance of marbled crayfish Procambarus fallax f. virginalis. Knowl. Manag. Aquat. Ecosyst. 2017;418:21. doi: 10.1051/kmae/2017014. DOI

Therneau T.M., Grambsch P.M. Modeling Survival Data: Extending the Cox Model. Springer; Berlin/Heidelberg, Germany: 2000. Therneau, T.M.; Grambsch, P.M. The Cox Model; pp. 39–77.

Zuur A., Ieno E.N., Walker N., Saveliev A.A., Smith G.M. Mixed Effects Models and Extensions in Ecology with R. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2009.

Cucherousset J., Copp G.H., Fox M.G., Sterud E., van Kleef H.H., Verreycken H., Záhorská E. Life-history traits and potential invasiveness of introduced pumpkinseed Lepomis gibbosus populations in northwestern Europe. Biol. Invasions. 2009;11:2171–2180. doi: 10.1007/s10530-009-9493-5. DOI

Grabowska J., Przybylski M. Life-history traits of non-native freshwater fish invaders differentiate them from natives in the Central European bioregion. Rev. Fish Biol. Fish. 2015;25:165–178. doi: 10.1007/s11160-014-9375-5. DOI

Pintor L.M., Sih A. Differences in growth and foraging behavior of native and introduced populations of an invasive crayfish. Biol. Invasions. 2009;11:1895–1902. doi: 10.1007/s10530-008-9367-2. DOI

Chucholl C., Morawetz K., Gross H. The clones are coming—strong increase in Marmorkrebs Procambarus fallax (Hagen, 1870) f. virginalis records from Europe. Aquat. Invasions. 2012;7:511–519. doi: 10.3391/ai.2012.7.4.008. DOI

Velisek J., Stara A., Zuskova E., Kouba A. Effects of three triazine metabolites and their mixture at environmentally relevant concentrations on early life stages of marbled crayfish (Procambarus fallax f. virginalis) Chemosphere. 2017;175:440–445. doi: 10.1016/j.chemosphere.2017.02.080. PubMed DOI

Holdich D.M. Biology of Freshwater Crayfish. Blackwell Science Oxford; Oxford, UK: 2002.

Lipták B., Mojžišová M., Gruľa D., Christophoryová J., Jablonski D., Bláha M., Petrusek A., Kouba A. Slovak section of the Danube has its well-established breeding ground of marbled crayfish Procambarus fallax f. virginalis. Knowl. Manag. Aquat. Ecosyst. 2017;418:40. doi: 10.1051/kmae/2017029. DOI

Tönges S., Masagounder K., Gutekunst J., Lohbeck J., Miller A.K., Boehl F., Lyko F. Physiological properties and tailored feeds to support aquaculture of marbled crayfish in closed systems. bioRxiv. 2020 doi: 10.1101/2020.02.25.964114. DOI

Andriantsoa R., Tönges S., Panteleit J., Theissinger K., Carneiro V.C., Rasamy J., Lyko F. Ecological plasticity and commercial impact of invasive marbled crayfish populations in Madagascar. BMC Ecol. 2019;19:8. doi: 10.1186/s12898-019-0224-1. PubMed DOI PMC

Jones J.P.G., Rasamy J.R., Harvey A., Toon A., Oidtmann B., Randrianarison M.H., Raminosoa N., Ravoahangimalala O.R. The perfect invader: A parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biol. Invasions. 2009;11:1475–1482. doi: 10.1007/s10530-008-9334-y. DOI

Maiakovska O., Andriantsoa R., Tönges S., Legrand C., Gutekunst J., Hanna K., Pârvulescu L., Novitsky R., Weiperth A., Sciberras A., et al. Genome analysis of the monoclonal marbled crayfish reveals genetic separation over a short evolutionary timescale. Commun. Biol. 2021;4:1–7. doi: 10.1038/s42003-020-01588-8. PubMed DOI PMC

Hossain M.S., Kouba A., Buřič M. Morphometry, size at maturity, and fecundity of marbled crayfish (Procambarus virginalis) Zool. Anz. 2019;281:68–75. doi: 10.1016/j.jcz.2019.06.005. DOI

Pieplow U. Fischereiwissenschaftliche Monographie von Cambarus affinis Say. Z. Für Fish. 1938;36:349–440.

Chybowski Ł. Morphometrics, fecundity, density, and feeding intensity of the spinycheek crayfish, Orconectes limosus (Raf.) in natural conditions. Fish. Aquat. Life. 2007;15:175–241.

Kozák P., Ďuriš Z., Petrusek A., Buřič M., Horká I., Kouba A., Kozubíková-Balcarová E., Policar T. Crayfish Biology and Culture. University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters; Vodňany, Czech Republic: 2015.

Guan R.-Z., Wiles P.R. Growth and reproduction of the introduced crayfish Pacifastacus leniusculus in a British lowland river. Fish. Res. 1999;42:245–259. doi: 10.1016/S0165-7836(99)00044-2. DOI

Buřič M., Haubrock P.J., Veselý L., Kozák P., Kouba A. Effective investments due to seasonal morphological changes? Possible reasons and consequences of allometric growth and reproduction in adult signal crayfish (Pacifastacus leniusculus) Can. J. Zool. 2021;99:85–96. doi: 10.1139/cjz-2020-0155. DOI

Westman K., Savolainen R., Pursiainen M. A comparative study on the growth and moulting of the noble crayfish, Astacus astacus (L.), and the signal crayfish, Pacifastacus leniusculus (Dana), in a small forest lake in southern Finland. Freshw. Crayfish. 1993;9:451–465.

Abrahamsson S.A. Density, growth and reproduction in populations of Astacus astacus and Pacifastacus leniusculus in an isolated pond. Oikos. 1971;22:373–380. doi: 10.2307/3543861. DOI

Ackefors H.E. Freshwater crayfish farming technology in the 1990s: A European and global perspective. Fish Fish. 2000;1:337–359. doi: 10.1046/j.1467-2979.2000.00023.x. DOI

Wickins J.F., Lee D.O.C. Crustacean Farming: Ranching and Culture. John Wiley & Sons; Hoboken, NJ, USA: 2008.

Oficialdegui F.J., Sánchez M.I., Clavero M. One century away from home: How the red swamp crayfish took over the world. Rev. Fish Biol. Fish. 2020;30:121–135. doi: 10.1007/s11160-020-09594-z. DOI

Haubrock P.J., Oficialdegui F.J., Zeng Y., Patoka J., Yeo D.C., Kouba A. The redclaw crayfish: A prominent aquaculture species with invasive potential in tropical and subtropical biodiversity hotspots. Rev. Aquac. 2021:accepted. doi: 10.1111/raq.12531. DOI

Kouba A., Kanta J., Buřič M., Policar T., Kozák P. The effect of water temperature on the number of moults and growth of juvenile noble crayfish, Astacus astacus (Linneaus) Freshw. Crayfish. 2010;17:37–41.

Hartnoll R.G. Growth in Crustacea—Twenty Years on. In: Paula J.P.M., Flores A.A.V., Fransen C.H.J.M., editors. Advances in Decapod Crustacean Research. Developments in Hydrobiology. Volume 154. Springer; Dordrecht, The Nezerlands: 2001. pp. 111–122.

Lindqvist O.V., Huner J.V. Life history characteristics of crayfish: What makes some of them good colonizers? In: Gheraardi F., Holdich D.M., editors. Crayfish in Europe as Alien Species: How to Make the Best of a Bad Situation. Volume 11. Crustacean Issues; Routledge; London, UK: 1999. pp. 23–30.

Hudina S., Hock K., Žganec K. The role of aggression in range expansion and biological invasions. Curr. Zool. 2014;60:401–409. doi: 10.1093/czoolo/60.3.401. DOI

Pârvulescu L., Stoia D.I., Miok K., Ion M.C., Puha A.E., Sterie M., Vereș M., Marcu I., Muntean D.M., Aburel O.M. Force and boldness: Cumulative assets of a successful crayfish invader. Front. Ecol. Evol. 2021;9:49. doi: 10.3389/fevo.2021.581247. DOI

Fořt M., Hossain S., Kouba A., Buřič M., Kozák P. Agonistic interactions and dominance establishment in three crayfish species non-native to Europe. Limnologica. 2019;74:73–79. doi: 10.1016/j.limno.2018.11.003. DOI

Jimenez S.A., Faulkes Z. Can the parthenogenetic marbled crayfish Marmorkrebs compete with other crayfish species in fights? J. Ethol. 2011;29:115–120. doi: 10.1007/s10164-010-0232-2. DOI

Hossain S., Kubec J., Kouba A., Kozák P., Buřič M. Still waters run deep: Marbled crayfish dominate over red swamp crayfish in agonistic interactions. Aquat. Ecol. 2019;53:97–107. doi: 10.1007/s10452-019-09675-7. DOI

Kouba A., Buřič M., Policar T., Kozák P. Evaluation of body appendage injuries to juvenile signal crayfish (Pacifastacus leniusculus): Relationships and consequences. Knowl. Manag. Aquat. Ecosyst. 2011;401:4. doi: 10.1051/kmae/2011012. DOI

Buřič M., Kouba A., Kozák P. Chelae regeneration in European alien crayfish Orconectes limosus (Rafinesque 1817) Knowl. Manag. Aquat. Ecosyst. 2009;394–395:4. doi: 10.1051/kmae/2009016. DOI

Niksirat H., Kouba A., Kozák P. Ultrastructure of egg activation and cortical reaction in the noble crayfish Astacus astacus. Micron. 2015;68:115–121. doi: 10.1016/j.micron.2014.09.010. PubMed DOI

Guo W., Kubec J., Veselý L., Hossain M.S., Buřič M., McClain R., Kouba A. High air humidity is sufficient for successful egg incubation and early post-embryonic development in the marbled crayfish (Procambarus virginalis) Freshw. Biol. 2019;64:1603–1612. doi: 10.1111/fwb.13357. DOI

Seitz R., Vilpoux K., Hopp U., Harzsch S., Maier G. Ontogeny of the Marmorkrebs (marbled crayfish): A parthenogenetic crayfish with unknown origin and phylogenetic position. J. Exp. Zool. Part A Comp. Exp. Biol. 2005;303A:393–405. doi: 10.1002/jez.a.143. PubMed DOI

Vogt G. Suitability of the clonal marbled crayfish for biogerontological research: A review and perspective, with remarks on some further crustaceans. Biogerontology. 2010;11:643–669. doi: 10.1007/s10522-010-9291-6. PubMed DOI

Chucholl C., Pfeiffer M. First evidence for an established Marmorkrebs (Decapoda, Astacida, Cambaridae) population in Southwestern Germany, in syntopic occurrence with Orconectes limosus (Rafinesque, 1817) Aquat. Invasions. 2010;5:405–412. doi: 10.3391/ai.2010.5.4.10. DOI

Huner J. Procambarus. Blackwell Science; Oxford, UK: 2002. pp. 541–584.

Avault J.W., Jr. Crawfish farming in the United States. Freshw. Crayfish. 1972;1:239–250.

Oluoch A. Breeding biology of the Louisiana red swamp crayfish Procambarus clarkii Girard in Lake Naivasha, Kenya. Hydrobiologia. 1990;208:85–92. doi: 10.1007/BF00008447. DOI

Buřič M., Kouba A., Kozák P. Intra-sex dimorphism in crayfish females. Zoology. 2010;113:301–307. doi: 10.1016/j.zool.2010.06.001. PubMed DOI

Buřič M., Kouba A., Kozák P. Molting and growth in relation to form alternations in the male spiny-cheek crayfish Orconectes limosus. Zool. Stud. 2010;49:28–38.

Stucki T.P. Diffrences in life history of native and introduced crayfish species in Switzerland. Freshw. Crayfish. 2002;13:463–476.

Kozák P., Buřič M., Policar T. The fecundity, time of egg development and juvenile production in spiny-cheek crayfish (Orconectes limosus) under controlled conditions. Bull. Français Pêche Piscic. 2006;380–381:1171–1182. doi: 10.1051/kmae:2006019. DOI

Lipták B., Mrugała A., Pekárik L., Mutkovič A., Gruľa D., Petrusek A., Kouba A. Expansion of the marbled crayfish in Slovakia: Beginning of an invasion in the Danube catchment? J. Limnol. 2016;75:305–312. doi: 10.4081/jlimnol.2016.1313. DOI

Kirjavainen J., Westman K. Development of an introduced signal crayfish (Pacifastacus leniusculus (Dana)) population in the small Lake Karisjärvi in central Finland. Freshw. Crayfish. 1995;10:140–150.

Kirjavainen J., Westman K. Natural history and development of the introduced signal crayfish, Pacifastacus leniusculus, in a small, isolated Finnish lake, from 1968 to 1993. Aquat. Living Resour. 1999;12:387–401. doi: 10.1016/S0990-7440(99)00110-2. DOI

Savolainen R., Westman K., Pursiainen M. Fecundity of Finnish noble crayfish, Astacus astacus L., and signal crayfish, Pacifastacus leniusculus, in various natural habitats and in culture. Freshw. Crayfish. 1996;11:319–338.

Beatty S., Morgan D., Gill H. Role of life history strategy in the colonisation of Western Australian aquatic systems by the introduced crayfish Cherax destructor Clark, 1936. Hydrobiologia. 2005;549:219–237. doi: 10.1007/s10750-005-5443-0. DOI

Johnston K., Robson B.J., Austin C.M. Population structure and life history characteristics of Euastacus bispinosus and Cherax destructor (Parastacidae) in the Grampians National Park, Australia. Freshw. Crayfish. 2008;16:165–173.

Semple G., Rouse D., McLain K. Cherax destructor, C. tenuimanus and C. quadricarinatus (Decapoda: Parastacidae): A comparative review of biological traits relating to aquaculture potential. Freshw. Crayfish. 1995;8:495–503.

Austin C. A comparison of clutch and brood size in the Red Claw, Cherax quadricarinatus (von Martens) and the Yabby, C. destructor Clark (Decapoda: Parastacidae) Aquaculture. 1998;167:135–145. doi: 10.1016/S0044-8486(98)00307-X. DOI

Huner J.V., Barr J., Coleman E.B. Red Swamp Crawfish: Biology and Exploitation. Louisiana Sea Grant College Program, Center for Wetland Resources, Louisiana State University; Barton Rouge, LA, USA: 1984.

Gutiérrez-Yurrita P.J., Del Olmo C.M. Population dynamics of juveniles of red swamp crayfish (Procambarus clarkii) under controlled conditions. Freshw. Crayfish. 2004;14:180–189.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...