Survival, Growth, and Reproduction: Comparison of Marbled Crayfish with Four Prominent Crayfish Invaders
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-04431S
Czech Science Foundation
Excelencia project P12-RNM 936
Regional Government of Andalusia
SS02030018
Technology Agency of the Czech Republic
PubMed
34068504
PubMed Central
PMC8151088
DOI
10.3390/biology10050422
PII: biology10050422
Knihovny.cz E-zdroje
- Klíčová slova
- animal release, biological invasion, pet trade, species interactions, sympatry,
- Publikační typ
- časopisecké články MeSH
Biological invasions are increasingly recognized ecological and economic threats to biodiversity and are projected to increase in the future. Introduced freshwater crayfish in particular are protruding invaders, exerting tremendous impacts on native biodiversity and ecosystem functioning, as exemplified by the North American spiny-cheek, signal and red swamp crayfish as well as the Australian common yabby. The marbled crayfish is among the most outstanding freshwater crayfish invaders due to its parthenogenetic reproduction combined with early maturation and high fecundity. As their introduced ranges expand, their sympatric populations become more frequent. The question of which species and under what circumstances will dominate in their introduced communities is of great interest to biodiversity conservation as it can offer valuable insights for understanding and prioritization of management efforts. In order to examine which of the aforementioned species may be more successful as an invader, we conducted a set of independent trials evaluating survival, growth, claw injury, and reproduction using single-species stocks (intraspecific interactions) and mixed stocks (interspecific interactions) of marbled crayfish vs. other crayfish invaders since the onset of exogenous feeding. In both single and mixed stocks, red swamp crayfish and yabby grew faster than marbled crayfish, while marbled crayfish were superior to both spiny-cheek and signal crayfish in terms of growth. With the exception of signal crayfish, the faster-growing species consistently reached a higher survival rate. The faster-growing species tended to negatively impair smaller counterparts by greater claw injury, delayed maturation, and reduced fecundity. Only marbled crayfish laid eggs as early as 14 weeks in this study, which is earlier than previously reported in the literature. Thus, the success of marbled crayfish among invasive crayfish is significantly driven by relatively fast growth as well as an early and frequent reproduction. These results shed light on how interactions between invasive populations can unfold when their expansion ranges overlap in the wild, thereby contributing to the knowledge base on the complex population dynamics between existing and emerging invasive species.
Zobrazit více v PubMed
Pyšek P., Bacher S., Chytrý M., Jarošík V., Wild J., Celesti-Grapow L., Gassó N., Kenis M., Lambdon P.W., Nentwig W., et al. Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Glob. Ecol. Biogeogr. 2010;19:317–331. doi: 10.1111/j.1466-8238.2009.00514.x. DOI
Hanafiah M.M., Leuven R.S.E.W., Sommerwerk N., Tockner K., Huijbregts M.A.J. Including the introduction of exotic species in life cycle impact assessment: The case of inland shipping. Environ. Sci. Technol. 2013;47:13934–13940. doi: 10.1021/es403870z. PubMed DOI
Seebens H., Essl F., Dawson W., Fuentes N., Moser D., Pergl J., Pyšek P., van Kleunen M., Weber E., Winter M. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 2015;21:4128–4140. doi: 10.1111/gcb.13021. PubMed DOI
Seebens H., Blackburn T.M., Dyer E.E., Genovesi P., Hulme P.E., Jeschke J.M., Pagad S., Pyšek P., Winter M., Arianoutsou M. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:14435. doi: 10.1038/ncomms14435. PubMed DOI PMC
Cohen A.N., Carlton J.T. Accelerating invasion rate in a highly invaded estuary. Science. 1998;279:555–558. doi: 10.1126/science.279.5350.555. PubMed DOI
Ricciardi A., Blackburn T.M., Carlton J.T., Dick J.T., Hulme P.E., Iacarella J.C., Jeschke J.M., Liebhold A.M., Lockwood J.L., MacIsaac H.J. Invasion science: A horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 2017;32:464–474. doi: 10.1016/j.tree.2017.03.007. PubMed DOI
Patoka J., Prabowo R.E., Petrtýl M., Reynolds J.D., Kuříková P., Zámečníková-Wanma B.P., Kalous L. Marine hitchhikers: A preliminary study on invertebrates unintentionally transported via the international pet trade. NeoBiota. 2020;61:33. doi: 10.3897/neobiota.61.57682. DOI
Jeschke J.M., Pyšek P. Tens Rule. In: Jeschke J.M., Heger T., editors. Invasion Biology: Hypotheses and Evidence. CAB International; Wallingford, UK: 2018. pp. 124–132.
Allendorf F.W., Lundquist L.L. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 2003;17:24–30. doi: 10.1046/j.1523-1739.2003.02365.x. DOI
Cuthbert R.N., Pattison Z., Taylor N.G., Verbrugge L., Diagne C., Ahmed D.A., Leroy B., Angulo E., Briski E., Capinha C., et al. Global economic costs of aquatic invasive alien species. Sci. Total Environ. 2021;775:145238. doi: 10.1016/j.scitotenv.2021.145238. PubMed DOI
Diagne C., Leroy B., Vaissière A.-C., Gozlan R.E., Roiz D., Jarić I., Salles J.-M., Bradshaw C.J., Courchamp F. High and rising economic costs of biological invasions worldwide. Nature. 2021:1–6. doi: 10.1038/s41586-021-03405-6. PubMed DOI
Strayer D.L. Alien species in fresh waters: Ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 2010;55:152–174. doi: 10.1111/j.1365-2427.2009.02380.x. DOI
Catford J.A., Vesk P.A., Richardson D.M., Pysek P. Quantifying levels of biological invasion: Towards the objective classification of invaded and invasible ecosystems. Glob. Chang. Biol. 2012;18:44–62. doi: 10.1111/j.1365-2486.2011.02549.x. DOI
Simberloff D., Martin J.-L., Genovesi P., Maris V., Wardle D.A., Aronson J., Courchamp F., Galil B., García-Berthou E., Pascal M. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013;28:58–66. doi: 10.1016/j.tree.2012.07.013. PubMed DOI
Seebens H., Bacher S., Blackburn T.M., Capinha C., Dawson W., Dullinger S., Genovesi P., Hulme P.E., van Kleunen M., Kühn I. Projecting the continental accumulation of alien species through to 2050. Glob. Chang. Biol. 2020;27:970–982. doi: 10.1111/gcb.15333. PubMed DOI
Russell J.C., Sataruddin N.S., Heard A.D. Over-invasion by functionally equivalent invasive species. Ecology. 2014;95:2268–2276. doi: 10.1890/13-1672.1. PubMed DOI
Copp G.H., Fox M.G. Can invasiveness in freshwater fishes be predicted from life-history traits? Front. Ecol. Evol. 2020;8:408. doi: 10.3389/fevo.2020.605287. DOI
Fox M., Vila-Gispert A., Copp G. Life-history traits of introduced Iberian pumpkinseed Lepomis gibbosus relative to native populations. Can differences explain colonization success? J. Fish Biol. 2007;71:56–69. doi: 10.1111/j.1095-8649.2007.01683.x. DOI
Crandall K.A., De Grave S. An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. J. Crustacean Biol. 2017;37:615–653. doi: 10.1093/jcbiol/rux070. DOI
Momot W.T. Redefining the role of crayfish in aquatic ecosystems. Rev. Fish Sci. 1995;3:33–63. doi: 10.1080/10641269509388566. DOI
Lipták B., Veselý L., Ercoli F., Bláha M., Buřič M., Ruokonen T., Kouba A. Trophic role of marbled crayfish in a lentic freshwater ecosystem. Aquat. Invasions. 2019;14:299–309. doi: 10.3391/ai.2019.14.2.09. DOI
Lodge D.M., Deines A., Gherardi F., Yeo D.C.J., Arcella T., Baldridge A.K., Barnes M.A., Chadderton W.L., Feder J.L., Gantz C.A., et al. Global Introductions of Crayfishes: Evaluating the Impact of Species Invasions on Ecosystem Services. Annu. Rev. Ecol. Evol. Syst. 2012;43:449–472. doi: 10.1146/annurev-ecolsys-111511-103919. DOI
Gherardi F., Aquiloni L., Dieguez-Uribeondo J., Tricarico E. Managing invasive crayfish: Is there a hope? Aquat. Sci. 2011;73:185–200. doi: 10.1007/s00027-011-0181-z. DOI
Holdich D.M., Reynolds J.D., Souty-Grosset C., Sibley P.J. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst. 2009;394–395:11. doi: 10.1051/kmae/2009025. DOI
Kouba A., Petrusek A., Kozák P. Continental-wide distribution of crayfish species in Europe: Update and maps. Knowl. Manag. Aquat. Ecosyst. 2014;413:5. doi: 10.1051/kmae/2014007. DOI
EU Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. Eur. Union. 2014;57:35.
EU Commission Implementing Regulation (EU) 2016/1141 of 13 July 2016 adopting a list of invasive alien species of Union concern pursuant to Regulation (EU) No 1143/2014 of the European Parliament and of the Council. Off. J. Eur. Union. 2016 Jul 13;189:4–8.
Svoboda J., Mrugała A., Kozubíková-Balcarová E., Petrusek A. Hosts and transmission of the crayfish plague pathogen Aphanomyces astaci: A review. J. Fish Dis. 2017;40:127–140. doi: 10.1111/jfd.12472. PubMed DOI
Vorburger C., Ribi G. Aggression and competition for shelter between a native and an introduced crayfish in Europe. Freshw. Biol. 1999;42:111–119. doi: 10.1046/j.1365-2427.1999.00465.x. DOI
Kouba A., Tíkal J., Císař P., Veselý L., Fořt M., Příborský J., Patoka J., Buřič M. The significance of droughts for hyporheic dwellers: Evidence from freshwater crayfish. Sci. Rep. 2016;6:26569. doi: 10.1038/srep26569. PubMed DOI PMC
Kozák P., Buřič M., Policar T., Hamáčková J., Lepičová A. The effect of inter-and intra-specific competition on survival and growth rate of native juvenile noble crayfish Astacus astacus and alien spiny-cheek crayfish Orconectes limosus. Hydrobiologia. 2007;590:85–94. doi: 10.1007/s10750-007-0760-0. DOI
Souty-Grosset C., Holdich D.M., Noël P.Y., Reynolds J., Haffner P. Atlas of Crayfish in Europe. Muséum National d’Histoire Naturelle; Paris, France: 2006.
Lodge D.M., Taylor C.A., Holdich D.M., Skurdal J. Nonindigenous crayfishes threaten North American freshwater biodiversity: Lessons from Europe. Fisheries. 2000;25:7–20. doi: 10.1577/1548-8446(2000)025<0007:NCTNAF>2.0.CO;2. DOI
Weiperth A., Bláha M., Szajbert B., Seprős R., Bányai Z., Patoka J., Kouba A. Hungary: A European hotspot of non-native crayfish biodiversity. Knowl. Manag. Aquat. Ecosyst. 2020;421:43. doi: 10.1051/kmae/2020035. DOI
Weiperth A., Gál B., Kuříková P., Bláha M., Kouba A., Patoka J. Cambarellus patzcuarensis in Hungary: The first dwarf crayfish established outside of North America. Biologia. 2017;72:1529–1532. doi: 10.1515/biolog-2017-0159. DOI
Szendőfi B., Bérces S., Csányi B., Gábris V., Gál B., Gönye Z., Répás E., Seprős R., Tóth B., Kouba A., et al. Egzotikus halfajok és decapodák a Barát-és Dera-patakban, valamint a torkolatuk dunai élőhelyein (Occurrence of exotic fish and crayfish species in Barát and Dera creeks and their adjacent section of the River Danube) Pisces Hung. 2018;12:47–51.
Grandjean F., Collas M., Uriarte M., Rousset M. First record of a marbled crayfish Procambarus virginalis (Lyko, 2017) population in France. Bioinvasions Rec. 2021;10 doi: 10.3391/bir.2021.10.2.12. in press. DOI
Jackson M.C., Jones T., Milligan M., Sheath D., Taylor J., Ellis A., England J., Grey J. Niche differentiation among invasive crayfish and their impacts on ecosystem structure and functioning. Freshw. Biol. 2014;59:1123–1135. doi: 10.1111/fwb.12333. DOI
Veselý L., Buřič M., Kouba A. Hardy exotics species in temperate zone: Can “warm water” crayfish invaders establish regardless of low temperatures? Sci. Rep. 2015;5:16340. doi: 10.1038/srep16340. PubMed DOI PMC
Veselý L., Ruokonen T.J., Weiperth A., Kubec J., Szajbert B., Guo W., Ercoli F., Bláha M., Buřič M., Hämäläinen H. Trophic niches of three sympatric invasive crayfish of EU concern. Hydrobiologia. 2021;848:727–737. doi: 10.1007/s10750-020-04479-5. DOI
Vogt G. Biology, Eecology, Evolution, Systematics and Utilization of the Parthenogenetic Marbled crayfish, Procambarus virginalis. In: Ribeiro F.B., editor. Crayfish: Evolution, Habitat and Conservation Strategies. Nova Science Publishers; Hauppauge, NY, USA: 2020. pp. 137–227.
Kawai T., Kouba A. A description of postembryonic development of Astacus astacus and Pontastacus leptodactylus. Freshw. Crayfish. 2020;25:103–116. doi: 10.5869/fc.2020.v25-1.103. DOI
Kouba A., Hamáčková J., Buřič M., Policar T., Kozak P. Use of three forms of decapsulated Artemia cysts as food for juvenile noble crayfish (Astacus astacus) Czech J. Anim. Sci. 2011;56:114–118. doi: 10.17221/1301-CJAS. DOI
Veselý L., Hrbek V., Kozák P., Buřič M., Sousa R., Kouba A. Salinity tolerance of marbled crayfish Procambarus fallax f. virginalis. Knowl. Manag. Aquat. Ecosyst. 2017;418:21. doi: 10.1051/kmae/2017014. DOI
Therneau T.M., Grambsch P.M. Modeling Survival Data: Extending the Cox Model. Springer; Berlin/Heidelberg, Germany: 2000. Therneau, T.M.; Grambsch, P.M. The Cox Model; pp. 39–77.
Zuur A., Ieno E.N., Walker N., Saveliev A.A., Smith G.M. Mixed Effects Models and Extensions in Ecology with R. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2009.
Cucherousset J., Copp G.H., Fox M.G., Sterud E., van Kleef H.H., Verreycken H., Záhorská E. Life-history traits and potential invasiveness of introduced pumpkinseed Lepomis gibbosus populations in northwestern Europe. Biol. Invasions. 2009;11:2171–2180. doi: 10.1007/s10530-009-9493-5. DOI
Grabowska J., Przybylski M. Life-history traits of non-native freshwater fish invaders differentiate them from natives in the Central European bioregion. Rev. Fish Biol. Fish. 2015;25:165–178. doi: 10.1007/s11160-014-9375-5. DOI
Pintor L.M., Sih A. Differences in growth and foraging behavior of native and introduced populations of an invasive crayfish. Biol. Invasions. 2009;11:1895–1902. doi: 10.1007/s10530-008-9367-2. DOI
Chucholl C., Morawetz K., Gross H. The clones are coming—strong increase in Marmorkrebs Procambarus fallax (Hagen, 1870) f. virginalis records from Europe. Aquat. Invasions. 2012;7:511–519. doi: 10.3391/ai.2012.7.4.008. DOI
Velisek J., Stara A., Zuskova E., Kouba A. Effects of three triazine metabolites and their mixture at environmentally relevant concentrations on early life stages of marbled crayfish (Procambarus fallax f. virginalis) Chemosphere. 2017;175:440–445. doi: 10.1016/j.chemosphere.2017.02.080. PubMed DOI
Holdich D.M. Biology of Freshwater Crayfish. Blackwell Science Oxford; Oxford, UK: 2002.
Lipták B., Mojžišová M., Gruľa D., Christophoryová J., Jablonski D., Bláha M., Petrusek A., Kouba A. Slovak section of the Danube has its well-established breeding ground of marbled crayfish Procambarus fallax f. virginalis. Knowl. Manag. Aquat. Ecosyst. 2017;418:40. doi: 10.1051/kmae/2017029. DOI
Tönges S., Masagounder K., Gutekunst J., Lohbeck J., Miller A.K., Boehl F., Lyko F. Physiological properties and tailored feeds to support aquaculture of marbled crayfish in closed systems. bioRxiv. 2020 doi: 10.1101/2020.02.25.964114. DOI
Andriantsoa R., Tönges S., Panteleit J., Theissinger K., Carneiro V.C., Rasamy J., Lyko F. Ecological plasticity and commercial impact of invasive marbled crayfish populations in Madagascar. BMC Ecol. 2019;19:8. doi: 10.1186/s12898-019-0224-1. PubMed DOI PMC
Jones J.P.G., Rasamy J.R., Harvey A., Toon A., Oidtmann B., Randrianarison M.H., Raminosoa N., Ravoahangimalala O.R. The perfect invader: A parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biol. Invasions. 2009;11:1475–1482. doi: 10.1007/s10530-008-9334-y. DOI
Maiakovska O., Andriantsoa R., Tönges S., Legrand C., Gutekunst J., Hanna K., Pârvulescu L., Novitsky R., Weiperth A., Sciberras A., et al. Genome analysis of the monoclonal marbled crayfish reveals genetic separation over a short evolutionary timescale. Commun. Biol. 2021;4:1–7. doi: 10.1038/s42003-020-01588-8. PubMed DOI PMC
Hossain M.S., Kouba A., Buřič M. Morphometry, size at maturity, and fecundity of marbled crayfish (Procambarus virginalis) Zool. Anz. 2019;281:68–75. doi: 10.1016/j.jcz.2019.06.005. DOI
Pieplow U. Fischereiwissenschaftliche Monographie von Cambarus affinis Say. Z. Für Fish. 1938;36:349–440.
Chybowski Ł. Morphometrics, fecundity, density, and feeding intensity of the spinycheek crayfish, Orconectes limosus (Raf.) in natural conditions. Fish. Aquat. Life. 2007;15:175–241.
Kozák P., Ďuriš Z., Petrusek A., Buřič M., Horká I., Kouba A., Kozubíková-Balcarová E., Policar T. Crayfish Biology and Culture. University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters; Vodňany, Czech Republic: 2015.
Guan R.-Z., Wiles P.R. Growth and reproduction of the introduced crayfish Pacifastacus leniusculus in a British lowland river. Fish. Res. 1999;42:245–259. doi: 10.1016/S0165-7836(99)00044-2. DOI
Buřič M., Haubrock P.J., Veselý L., Kozák P., Kouba A. Effective investments due to seasonal morphological changes? Possible reasons and consequences of allometric growth and reproduction in adult signal crayfish (Pacifastacus leniusculus) Can. J. Zool. 2021;99:85–96. doi: 10.1139/cjz-2020-0155. DOI
Westman K., Savolainen R., Pursiainen M. A comparative study on the growth and moulting of the noble crayfish, Astacus astacus (L.), and the signal crayfish, Pacifastacus leniusculus (Dana), in a small forest lake in southern Finland. Freshw. Crayfish. 1993;9:451–465.
Abrahamsson S.A. Density, growth and reproduction in populations of Astacus astacus and Pacifastacus leniusculus in an isolated pond. Oikos. 1971;22:373–380. doi: 10.2307/3543861. DOI
Ackefors H.E. Freshwater crayfish farming technology in the 1990s: A European and global perspective. Fish Fish. 2000;1:337–359. doi: 10.1046/j.1467-2979.2000.00023.x. DOI
Wickins J.F., Lee D.O.C. Crustacean Farming: Ranching and Culture. John Wiley & Sons; Hoboken, NJ, USA: 2008.
Oficialdegui F.J., Sánchez M.I., Clavero M. One century away from home: How the red swamp crayfish took over the world. Rev. Fish Biol. Fish. 2020;30:121–135. doi: 10.1007/s11160-020-09594-z. DOI
Haubrock P.J., Oficialdegui F.J., Zeng Y., Patoka J., Yeo D.C., Kouba A. The redclaw crayfish: A prominent aquaculture species with invasive potential in tropical and subtropical biodiversity hotspots. Rev. Aquac. 2021:accepted. doi: 10.1111/raq.12531. DOI
Kouba A., Kanta J., Buřič M., Policar T., Kozák P. The effect of water temperature on the number of moults and growth of juvenile noble crayfish, Astacus astacus (Linneaus) Freshw. Crayfish. 2010;17:37–41.
Hartnoll R.G. Growth in Crustacea—Twenty Years on. In: Paula J.P.M., Flores A.A.V., Fransen C.H.J.M., editors. Advances in Decapod Crustacean Research. Developments in Hydrobiology. Volume 154. Springer; Dordrecht, The Nezerlands: 2001. pp. 111–122.
Lindqvist O.V., Huner J.V. Life history characteristics of crayfish: What makes some of them good colonizers? In: Gheraardi F., Holdich D.M., editors. Crayfish in Europe as Alien Species: How to Make the Best of a Bad Situation. Volume 11. Crustacean Issues; Routledge; London, UK: 1999. pp. 23–30.
Hudina S., Hock K., Žganec K. The role of aggression in range expansion and biological invasions. Curr. Zool. 2014;60:401–409. doi: 10.1093/czoolo/60.3.401. DOI
Pârvulescu L., Stoia D.I., Miok K., Ion M.C., Puha A.E., Sterie M., Vereș M., Marcu I., Muntean D.M., Aburel O.M. Force and boldness: Cumulative assets of a successful crayfish invader. Front. Ecol. Evol. 2021;9:49. doi: 10.3389/fevo.2021.581247. DOI
Fořt M., Hossain S., Kouba A., Buřič M., Kozák P. Agonistic interactions and dominance establishment in three crayfish species non-native to Europe. Limnologica. 2019;74:73–79. doi: 10.1016/j.limno.2018.11.003. DOI
Jimenez S.A., Faulkes Z. Can the parthenogenetic marbled crayfish Marmorkrebs compete with other crayfish species in fights? J. Ethol. 2011;29:115–120. doi: 10.1007/s10164-010-0232-2. DOI
Hossain S., Kubec J., Kouba A., Kozák P., Buřič M. Still waters run deep: Marbled crayfish dominate over red swamp crayfish in agonistic interactions. Aquat. Ecol. 2019;53:97–107. doi: 10.1007/s10452-019-09675-7. DOI
Kouba A., Buřič M., Policar T., Kozák P. Evaluation of body appendage injuries to juvenile signal crayfish (Pacifastacus leniusculus): Relationships and consequences. Knowl. Manag. Aquat. Ecosyst. 2011;401:4. doi: 10.1051/kmae/2011012. DOI
Buřič M., Kouba A., Kozák P. Chelae regeneration in European alien crayfish Orconectes limosus (Rafinesque 1817) Knowl. Manag. Aquat. Ecosyst. 2009;394–395:4. doi: 10.1051/kmae/2009016. DOI
Niksirat H., Kouba A., Kozák P. Ultrastructure of egg activation and cortical reaction in the noble crayfish Astacus astacus. Micron. 2015;68:115–121. doi: 10.1016/j.micron.2014.09.010. PubMed DOI
Guo W., Kubec J., Veselý L., Hossain M.S., Buřič M., McClain R., Kouba A. High air humidity is sufficient for successful egg incubation and early post-embryonic development in the marbled crayfish (Procambarus virginalis) Freshw. Biol. 2019;64:1603–1612. doi: 10.1111/fwb.13357. DOI
Seitz R., Vilpoux K., Hopp U., Harzsch S., Maier G. Ontogeny of the Marmorkrebs (marbled crayfish): A parthenogenetic crayfish with unknown origin and phylogenetic position. J. Exp. Zool. Part A Comp. Exp. Biol. 2005;303A:393–405. doi: 10.1002/jez.a.143. PubMed DOI
Vogt G. Suitability of the clonal marbled crayfish for biogerontological research: A review and perspective, with remarks on some further crustaceans. Biogerontology. 2010;11:643–669. doi: 10.1007/s10522-010-9291-6. PubMed DOI
Chucholl C., Pfeiffer M. First evidence for an established Marmorkrebs (Decapoda, Astacida, Cambaridae) population in Southwestern Germany, in syntopic occurrence with Orconectes limosus (Rafinesque, 1817) Aquat. Invasions. 2010;5:405–412. doi: 10.3391/ai.2010.5.4.10. DOI
Huner J. Procambarus. Blackwell Science; Oxford, UK: 2002. pp. 541–584.
Avault J.W., Jr. Crawfish farming in the United States. Freshw. Crayfish. 1972;1:239–250.
Oluoch A. Breeding biology of the Louisiana red swamp crayfish Procambarus clarkii Girard in Lake Naivasha, Kenya. Hydrobiologia. 1990;208:85–92. doi: 10.1007/BF00008447. DOI
Buřič M., Kouba A., Kozák P. Intra-sex dimorphism in crayfish females. Zoology. 2010;113:301–307. doi: 10.1016/j.zool.2010.06.001. PubMed DOI
Buřič M., Kouba A., Kozák P. Molting and growth in relation to form alternations in the male spiny-cheek crayfish Orconectes limosus. Zool. Stud. 2010;49:28–38.
Stucki T.P. Diffrences in life history of native and introduced crayfish species in Switzerland. Freshw. Crayfish. 2002;13:463–476.
Kozák P., Buřič M., Policar T. The fecundity, time of egg development and juvenile production in spiny-cheek crayfish (Orconectes limosus) under controlled conditions. Bull. Français Pêche Piscic. 2006;380–381:1171–1182. doi: 10.1051/kmae:2006019. DOI
Lipták B., Mrugała A., Pekárik L., Mutkovič A., Gruľa D., Petrusek A., Kouba A. Expansion of the marbled crayfish in Slovakia: Beginning of an invasion in the Danube catchment? J. Limnol. 2016;75:305–312. doi: 10.4081/jlimnol.2016.1313. DOI
Kirjavainen J., Westman K. Development of an introduced signal crayfish (Pacifastacus leniusculus (Dana)) population in the small Lake Karisjärvi in central Finland. Freshw. Crayfish. 1995;10:140–150.
Kirjavainen J., Westman K. Natural history and development of the introduced signal crayfish, Pacifastacus leniusculus, in a small, isolated Finnish lake, from 1968 to 1993. Aquat. Living Resour. 1999;12:387–401. doi: 10.1016/S0990-7440(99)00110-2. DOI
Savolainen R., Westman K., Pursiainen M. Fecundity of Finnish noble crayfish, Astacus astacus L., and signal crayfish, Pacifastacus leniusculus, in various natural habitats and in culture. Freshw. Crayfish. 1996;11:319–338.
Beatty S., Morgan D., Gill H. Role of life history strategy in the colonisation of Western Australian aquatic systems by the introduced crayfish Cherax destructor Clark, 1936. Hydrobiologia. 2005;549:219–237. doi: 10.1007/s10750-005-5443-0. DOI
Johnston K., Robson B.J., Austin C.M. Population structure and life history characteristics of Euastacus bispinosus and Cherax destructor (Parastacidae) in the Grampians National Park, Australia. Freshw. Crayfish. 2008;16:165–173.
Semple G., Rouse D., McLain K. Cherax destructor, C. tenuimanus and C. quadricarinatus (Decapoda: Parastacidae): A comparative review of biological traits relating to aquaculture potential. Freshw. Crayfish. 1995;8:495–503.
Austin C. A comparison of clutch and brood size in the Red Claw, Cherax quadricarinatus (von Martens) and the Yabby, C. destructor Clark (Decapoda: Parastacidae) Aquaculture. 1998;167:135–145. doi: 10.1016/S0044-8486(98)00307-X. DOI
Huner J.V., Barr J., Coleman E.B. Red Swamp Crawfish: Biology and Exploitation. Louisiana Sea Grant College Program, Center for Wetland Resources, Louisiana State University; Barton Rouge, LA, USA: 1984.
Gutiérrez-Yurrita P.J., Del Olmo C.M. Population dynamics of juveniles of red swamp crayfish (Procambarus clarkii) under controlled conditions. Freshw. Crayfish. 2004;14:180–189.