Hardy exotics species in temperate zone: can "warm water" crayfish invaders establish regardless of low temperatures?

. 2015 Nov 17 ; 5 () : 16340. [epub] 20151117

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26572317

The spreading of new crayfish species poses a serious risk for freshwater ecosystems; because they are omnivores they influence more than one level in the trophic chain and they represent a significant part of the benthic biomass. Both the environmental change through global warming and the expansion of the pet trade increase the possibilities of their spreading. We investigated the potential of four "warm water" highly invasive crayfish species to overwinter in the temperate zone, so as to predict whether these species pose a risk for European freshwaters. We used 15 specimens of each of the following species: the red swamp crayfish (Procambarus clarkii), the marbled crayfish (Procambarus fallax f. virginalis), the yabby (Cherax destructor), and the redclaw (Cherax quadricarinatus). Specimens were acclimatized and kept for 6.5 months at temperatures simulating the winter temperature regime of European temperate zone lentic ecosystems. We conclude that the red swamp crayfish, marbled crayfish and yabby have the ability to withstand low winter temperatures relevant for lentic habitats in the European temperate zone, making them a serious invasive threat to freshwater ecosystems.

Zobrazit více v PubMed

McKinney M. L. & Lockwood J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999). PubMed

Wilson J., Dormontt E., Prentis P., Lowe A. & Richardson D. Something in the way you move: dispersal pathways affect invasion success. Trends Ecol. Evol. 24, 136–144 (2009). PubMed

Momot W. T. Redefining the role of crayfish in aquatic ecosystems. Rev. Fish Sci. 3, 33–63 (1995).

Clavero M. & García-Berthou E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005). PubMed

Strayer D., Eviner V., Jeschke J. & Pace M. Understanding the long-term effects of species invasions. Trends Ecol. Evol. 21, 645–651 (2006). PubMed

Moyle P. B. & Light T. Biological invasions of fresh water: empirical rules and assembly theory. Biol. Conserv. 78, 149–161 (1996).

Goodwin B. J., McAllister A. J. & Fahrig L. Predicting invasiveness of plant species based on biological information. Conserv. Biol. 13, 422–426 (1999).

Dukes J. S. & Mooney H. A. Does global change increase the success of biological invaders? Trends Ecol. Evol. 14, 135–139 (1999). PubMed

Neveu A. A functional approach to patch suitability using biomass dynamics: application to a residual population of the white-clawed crayfish. Fund. Appl. Limnol. 175, 185–202 (2009).

Dorn N. J. & Wojdak J. M. The role of omnivorous crayfish in littoral communities. Oecologia 140, 150–159 (2004). PubMed

Creed R. P. Jr & Reed J. M. Ecosystem engineering by crayfish in a headwater stream community. J. N. Am. Benthol. Soc. 23, 224–236 (2004).

Edwards B. A., Jackson D. A. & Somers K. M. Multispecies crayfish declines in lakes: implications for species distributions and richness. J. N. Am. Benthol. 28, 719–732 (2009).

Twardochleb L. A., Olden J. D. & Larson E. R. A global meta-analysis of the ecological impacts of nonnative crayfish. Freshw. Sci. 32, 1367–1382 (2013).

Nyström P., Svensson O., Lardner B., Brönmark C. & Granéli W. The influence of multiple introduced predators on a littoral pond community. Ecology 82, 1023–1039 (2001).

Gherardi F. & Acquistapace P. Invasive crayfish in Europe: the impact of Procambarus clarkii on the littoral community of a Mediterranean lake. Freshwater Biol. 52, 1249–1259 (2007).

Tricarico E., Vilizzi L., Gherardi F. & Copp G. Calibration of FI-ISK, an invasiveness screening tool for nonnative freshwater invertebrates. Risk Anal. 30, 285–292 (2010). PubMed

Grey J. & Jackson M. ‘Leaves and eats shoots’: direct terrestrial feeding can supplement invasive red swamp crayfish in times of need. PloS one 7, e42575 (2012). PubMed PMC

Peay S. Invasive non-indigenous crayfish species in Europe: recommendations on managing them. Knowl. Manag. Aquat. Ec. 394–395, 3 (2009).

Capinha C., Anastácio P. & Tenedório J. A. Predicting the impact of climate change on the invasive decapods of the Iberian inland waters: an assessment of reliability. Biol. Invasions 14, 1737–1751 (2012).

Capinha C., Larson E. R., Tricarico E., Olden J. D. & Gherardi F. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes. Conserv. Biol. 27, 731–740 (2013). PubMed

Huang D., Haack R. A. & Zhang R. Does global warming increase establishment rates of invasive alien species? A centurial time series analysis. PloS one 6, e24733 (2011). PubMed PMC

Montserrat M., Sahún R. M. & Guzmán C. Can climate change jeopardize predator control of invasive herbivore species? A case study in avocado agro-ecosystems in Spain. Exp. Appl. Acarol. 59, 27–42 (2013). PubMed

Feria T. P. & Faulkes Z. Forecasting the distribution of Marmorkrebs, a parthenogenetic crayfish with high invasive potential, in Madagascar, Europe, and North America. Aquat. Invasions 6, 55–67 (2011).

Kouba A., Petrusek A. & Kozák P. Continental-wide distribution of crayfish species in Europe: update and maps. Knowl. Manag. Aquat. Ec. 413, 5p1–5p31 (2014).

Campos E. & Rodriguez-Almaraz G. A. Distribution of the red swamp crayfish Procambarus clarkii (Girard, 1852) (Decapoda: Cambaridae) in Mexico: an update. J. Crustacean Biol. 12, 627–630 (1992).

Hobbs H., Jass J. P. & Huner J. V. A review of global crayfish introductions with particular emphasis on two North American species (Decapoda, Cambaridae). Crustaceana 56, 299–316 (1989).

Martin P., Dorn N. J., Kawai T., van der Heiden C. & Scholtz G. The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen, 1870). Contrib. Zool. 79, 107–118 (2010).

Chucholl C. Predicting the risk of introduction and establishment of an exotic aquarium animal in Europe: insights from one decade of Marmorkrebs (Crustacea, Astacida, Cambaridae) releases. Manag. Biol. Invasions 5, 309–318 (2014).

Horwitz P. & Knott B. The distribution and spread of the yabby Cherax destructor complex in Australia: speculations, hypotheses and the need for research. Freshwater Crayfish 10, 81–90 (1995).

Holdich D. M., et al. in: Atlas of Crayfish in Europe (eds. Souty-Grosset C. et al. ). Ch. 3, 49–130 (Muséum national d´Histoire naturelle, 2006).

Withnall F. Biology of Yabbies (Cherax destructor). Aquaculture notes, State of Victoria, Department of Natural Resources and Environment (2000).

Jones C. M. The biology and aquaculture potential of Cherax quadricarinatus. 1–116 (Queensland Department of Primary Industries to the Reserve Bank of Australia Rural Credits Development (1989).

Jaklič M. & Vrezec A. The first tropical alien crayfish species in European waters: the redclaw Cherax quadricarinatus (Von Martens, 1868) (Decapoda, Parastacidae). Crustaceana 84, 651–665 (2011).

Patoka J., Kalous L. & Kopecký O. Risk assessment of the crayfish pet trade based on data from the Czech Republic. Biol. Invasions 16, 2489–2494 (2014).

Faulkes Z. in Freshwater Crayfish: A Global Overview (eds. Kawai T. Faulkes Z.Scholtz ). Ch. 4, 31–53 (CRC Press, 2015).

Chucholl C. Invaders for sale: trade and determinants of introduction of ornamental freshwater crayfish. Biol. Invasions 15, 125–141 (2013).

Catford J. A., Jansson R. & Nilsson C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).

Larson E. R. & Olden J. D. Using avatar species to model the potential distribution of emerging invaders. Global Ecol. Biogeogr. 21, 1114–1125 (2012).

Petutschnig J. Der Rote Amerikanischer Sumpfkrebs (Procambarus clarkii) in Österreich. Forum flusskrebse 10, 21–25 (2008).

Chucholl C. Disjunct distribution pattern of Procambarus clarkii (Crustacea, Decapoda, Astacida, Cambaridae) in an artificial lake system in Southwestern Germany. Aquat. Invasions 6, 109–113 (2011).

Gherardi F. Crayfish invading Europe: the case study of Procambarus clarkii. Mar. Freshw. Behav. Phy. 39, 175–191 (2006).

Diéguez-Uribeondo J., Huang T.-S., Cerenius L. & Söderhäll K. Physiological adaptation of an Aphanomyces astaci strain isolated from the freshwater crayfish Procambarus clarkii. Mycol. Res. 99, 574–578 (1995).

Diéguez-Uribeondo J. & Söderhäll K. Procambarus clarkii Girard as a vector for the crayfish plague fungus, Aphanomyces astaci Schikora. Aquac. Res. 24, 761–765 (1993).

Gherardi F., Barbaresi S. & Salvi G. Spatial and temporal patterns in the movement of Procambarus clarkii, an invasive crayfish. Aquat. Sci. 62, 179–193 (2000).

Holdich D., Reynolds J., Souty-Grosset C. & Sibley P. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Manag. Aquat. Ec. 394–395, 11p1–11p46 (2009).

Holdich D. M. & Crandall K. Biology of Freshwater Crayfish. (Blackwell Science Oxford, 2002).

Suko T. Studies on the development of the crayfish. VI. The reproductive cycle. Sci. Rep. Saitama Univ. Ser. B 3, 79–91 (1958).

Suko T. Studies on the development of the crayfish. IV. Development of winter eggs. Sci. Rep. Saitama Univ. Ser. B 2, 213–219 (1956).

Croll S. L. & Watts S. A. The effect of temperature on feed consumption and nutrient absorption in Procambarus clarkii and Procambarus zonangulus. J. World Aquacult. Soc. 35, 478–488 (2004).

Filipová L., Grandjean F., Chucholl C., Soes D. & Petrusek A. Identification of exotic North American crayfish in Europe by DNA barcoding. Knowl. Manag. Aquat. Ec. 401, 11p1–11p14 (2011).

Capinha C., Leung B. & Anastácio P. Predicting worldwide invasiveness for four major problematic decapods: an evaluation of using different calibration sets. Ecography 34, 448–459 (2011).

Scalici M. et al. F. The new threat to Italian inland waters from the alien crayfish “gang”: the Australian Cherax destructor Clark, 1936. Hydrobiologia 632, 341–345 (2009).

Capinha C. & Anastácio P. Assessing the environmental requirements of invaders using ensembles of distribution models. Divers. Distrib. 17, 13–24 (2011).

Scholtz G. et al. Ecology: Parthenogenesis in an outsider crayfish. Nature 421, 806 (2003). PubMed

Martin P., Kohlmann K. & Scholtz G. The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwissenschaften 94, 843–846 (2007). PubMed

Seitz R., Vilpoux K., Hopp U., Harzsch S. & Maier G. Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J. Exp. Zool. Part A 303, 393–405 (2005). PubMed

Jimenez S. & Faulkes Z. Establishment and care of a colony of parthenogenetic marbled crayfish, Marmorkrebs. Invertebrate Rearing 1, 10–18 (2010).

Chucholl C., Morawetz K. & Groß H. The clones are coming–strong increase in Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] records from Europe. Aquat. Invasions 7, 511–519 (2012).

Janský V. & Mutkovič A. Rak Procambarus sp.(Crustacea: Decapoda: Cambaridae)–Prvŷ Nález na Slovensku. Acta Rer. Nat. Mus. Nat. Slovaci 56, 64–67 (2010).

Vojkovská R., Horká I., Tricarico E. & Ďuriš Z. New record of the parthenogenetic marbled crayfish Procambarus fallax f. virginalis from Italy. Crustaceana 87, 1386–1392 (2014).

Samardžić M., Lucić A., Maguire I. & Hudina S. The first record of the marbled crayfish (Procambarus fallax (Hagen, 1870) f. virginalis) in Croatia. Crayfish News 36, 4 (2014).

Svoboda J. et al. The crayfish plague pathogen can infect freshwater‐inhabiting crabs. Freshwater Biol. 59, 918–929 (2014).

Schrimpf A., Schmidt T. & Schulz R. Invasive Chinese mitten crab (Eriocheir sinensis) transmits crayfish plague pathogen (Aphanomyces astaci). Aquat. Invasions 9, 203–209 (2014).

Karplus I. et al. Culture of the Australian red-claw crayfish (Cherax quadricarinatus) in Israel: III. Survival in earthen ponds under ambient winter temperatures. Aquaculture 166, 259–267 (1998).

Therneau T. M. & Grambsch P. M. Modeling survival data: extending the Cox model. (Springer Science & Business Media, 2000).

Moeschberger K. modifications by Jun Yan (2012). KMsurv: Data sets from Klein and Moeschberger (1997), Survival Analysis. R package version 0.1-5 (2012) Available at: https://cran.r-project.org/web/packages/KMsurv/KMsurv.pdf Accessed: (19th Febuary 2015).

Schloerke B. et al. Ggally: Extension to ggplot2. R package version 0.5.0. Available at: https://cran.r-project.org/web/packages/GGally/GGally.pdf Accessed: (19th Febuary 2015).

Wickham H. ggplot2: elegant graphics for data analysis. (Springer Science & Business Media, 2009).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...