Contrast Tempo of Movement and Its Effect on Power Output and Bar Velocity During Resistance Exercise
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33551848
PubMed Central
PMC7854892
DOI
10.3389/fphys.2020.629199
Knihovny.cz E-zdroje
- Klíčová slova
- cadence, duration of repetition, resistance exercise, time under tension, velocity of movement,
- Publikační typ
- časopisecké články MeSH
In this study, we examined the impact of contrast movement tempo (fast vs. slow) on power output and bar velocity during the bench press exercise. Ten healthy men (age = 26.9 ± 4.1 years; body mass = 90.5 ± 10.3 kg; bench press 1RM = 136.8 ± 27.7 kg) with significant experience in resistance training (9.4 ± 5.6 years) performed the bench press exercise under three conditions: with an explosive tempo of movement in each of three repetitions (E/E/E = explosive, explosive, explosive); with a slow tempo of movement in the first repetition and an explosive tempo in the next two repetitions (S/E/E = slow, explosive, explosive); and with a slow tempo of movement in the first two repetitions and an explosive tempo in the last repetition (S/S/E = slow, slow, explosive). The slow repetitions were performed with a 5/0/5/0 (eccentric/isometric/concentric/isometric) movement tempo, while the explosive repetitions were performed with an X/0/X/0 (X- maximal speed of movement) movement tempo. During each experimental session, the participants performed one set of three repetitions at 60%1RM. The two-way repeated measures ANOVA showed a statistically significant interaction effect for peak power output (PP; p = 0.03; η 2 = 0.26) and for peak bar velocity (PV; p = 0.04; η 2 = 0.24). Futhermore there was a statistically significant main effect of condition for PP (p = 0.04; η 2 = 0.30) and PV (p = 0.02; η 2 = 0.35). The post hoc analysis for interaction revealed that PP was significantly higher in the 2nd and 3rd repetition for E/E/E compared with the S/S/E (p < 0.01 for both) and significantly higher in the 2nd repetition for the S/E/E compared with S/S/E (p < 0.01). The post hoc analysis for interaction revealed that PV was significantly higher in the 2nd and 3rd repetition for E/E/E compared with the S/S/E (p < 0.01 for both), and significantly higher in the 2nd repetition for the S/E/E compared with the S/S/E (p < 0.01). The post hoc analysis for main effect of condition revealed that PP and PV was significantly higher for the E/E/E compared to the S/S/E (p = 0.04; p = 0.02; respectively). The main finding of this study was that different distribution of movement tempo during a set has a significant impact on power output and bar velocity in the bench press exercise at 60%1RM. However, the use of one slow repetition at the beginning of a set does not decrease the level of power output in the third repetition of that set.
Department of Sport Games Faculty of Physical Education and Sport Charles University Prague Czechia
Faculty of Physical Education Gdańsk University of Physical Education and Sport Gdańsk Poland
Institute of Sport Sciences Jerzy Kukuczka Academy of Physical Education in Katowice Katowice Poland
Zobrazit více v PubMed
American College of Sports Medicine (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 41, 687–708. 10.1249/MSS.0b013e3181915670, PMID: PubMed DOI
Baechle T. R., Earle R. W. (eds.) (2008). “Resistence training” in Essentials of strength training and conditioning. 3rd Edn. Champaign, IL: Human Kinetics, 381–413.
Behm D. G., Sale D. G. (1993). Intended rather than actual movement velocity determines velocity-specific training response. J. Appl. Physiol. 74, 359–368. PubMed
Bird S. K., Tarpenning K. M., Marino F. E. (2005). Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med. 35, 841–851. 10.2165/00007256-200535100-00002, PMID: PubMed DOI
Bottaro M., Machado S. N., Nogueira W., Scales R., Veloso J. (2007). Effect of high versus low-velocity resistance training on muscular fitness and functional performance in older men. Eur. J. Appl. Physiol. Occup. Physiol. 99, 257–264. 10.1007/s00421-006-0343-1, PMID: PubMed DOI
Cormie P., McGuigan M. R., Newton R. U. (2011). Developing maximal neuromuscular power: part 2 - training considerations for improving maximal power production. Sports Med. 41, 125–146. 10.2165/11538500-000000000-00000, PMID: PubMed DOI
Davies T., Kuang K., Orr R., Halaki M., Hackett D. (2017). Effect of movement velocity during resistance training on dynamic muscular strength: a systematic review and meta-analysis. Sports Med. 47, 1603–1617. 10.1007/s40279-017-0676-4, PMID: PubMed DOI
Farthing J. P., Chilibeck P. D. (2003). The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur. J. Appl. Physiol. 89, 578–586. 10.1007/s00421-003-0842-2, PMID: PubMed DOI
Fernandes J. F. T., Lamb K. L., Twist C. A. (2018). A comparison of load-velocity and load-power relationships between well-trained young and middle-aged males during three popular resistance exercises. J. Strength Cond. Res. 32, 1440–1447. 10.1519/JSC.0000000000001986, PMID: PubMed DOI
Fielding R. A., LeBrasseur N. K., Cuoco A., Bean J., Mizer K., Singh M. A. (2002). High-velocity resistance training increases skeletal muscle peak power in older women. J. Am. Geriatr. Soc. 50, 655–662. 10.1046/j.1532-5415.2002.50159.x, PMID: PubMed DOI
Garnacho-Castaño M. V., Lo´pez-Lastra S., Mate´-Muñoz J. L. (2015). Reliability and validity assessment of a linear position transducer. J. Sports Sci. Med. 14, 128–136. PMID: PubMed PMC
Gonzalez A. M. (2016). Acute anabolic response and muscular adaptation following hypertrophy-style and strength-style resistance exercise. J. Strength Cond. Res. 30, 2959–2964. 10.1519/jsc.0000000000001378 PubMed DOI
Goto K., Takahashi K., Yamamoto M., Takamatsu K. (2008). Hormone and recovery responses to resistance exercise with slow movement. J. Physiol. Sci. 58, 7–14. 10.2170/physiolsci.RP003107, PMID: PubMed DOI
Grgic J., Homolak J., Mikulic P., Botella J., Schoenfeld B. J. (2018). Inducing hypertrophic effects of type I skeletal muscle fibers: a hypothetical role of time under load in resistance training aimed at muscular hypertrophy. Med. Hypotheses 112, 40–42. 10.1016/j.mehy.2018.01.012, PMID: PubMed DOI
Haff G. G., Stone M. H. (2015). Methods of developing power with special reference to football players. J. Strength Cond. Res. 37, 2–16. 10.1519/ssc.0000000000000153 DOI
Hatfield D. L., Kraemer W. J., Spiering B. A., Häkkinen K., Volek J. S., Shimano T., et al. . (2006). The impact of velocity of movement on performance factors in resistance exercise. J. Strength Cond. Res. 20, 760–766. 10.1519/R-155552.1, PMID: PubMed DOI
Hay J. G., Andrews J. G., Vaughan C. L. (1983). Effects of lifting rate on elbow torques exerted during arm curl exercises. Med. Sci. Sports Exerc. 15, 63–71. PubMed
Headley S. A., Henry K., Nindl B. C., Thompson B. A., Kraemer W. J., Jones M. T. (2011). Effects of lifting tempo on one repetition maximum and hormonal responses to a bench press protocol. J. Strength Cond. Res. 25, 406–413. 10.1519/JSC.0b013e3181bf053b, PMID: PubMed DOI
Hunter G. R., Seelhorst D., Snyder S. (2003). Comparison of metabolic and heart rate responses to super slow vs. traditional resistance training. J. Strength Cond. Res. 7, 76–81. 10.1519/1533-4287(2003)017<0076:comahr>2.0.co;2, PMID: PubMed DOI
Keeler L. K., Finkelstein L. H., Miller W., Fernhall B. (2001). Early-phase adaptations of traditional-speed vs. superslow resistance training on strength and aerobic capacity in sedentary individuals. J. Strength Cond. Res. 15, 309–314. PMID: PubMed
Kipp K., Harris C., Sabick M. B. (2011). Lower extremity biomechanics during weightlifting exercise vary across joint and load. J. Strength Cond. Res. 25, 1229–1234. 10.1519/JSC.0b013e3181da780b, PMID: PubMed DOI
Kipp K., Harris C., Sabick M. B. (2013). Correlations between internal and external power outputs during weightlifting exercises. J. Strength Cond. Res. 27, 1025–1030. 10.1519/JSC.0b013e318264c2d8, PMID: PubMed DOI
Krzysztofik M., Wilk M., Wojdala G., Golas A. (2019). Maximizing muscle hypertrophy: a systematic review of advanced resistance training techniques and methods. Int. J. Environ. Res. Public Health 16:4897. 10.3390/ijerph16244897, PMID: PubMed DOI PMC
Lachance P. F., Hortobagyi T. (1994). Influence of cadence on muscular performance during push-up and pull-up exercises. J. Strength Cond. Res. 8, 76–79.
Lasevicius T., Schoenfeld B. J., Silva-Batista C., Barros T. S., Aihara A. Y., Brendon H., et al. . (2019). Muscle failure promotes greater muscle hypertrophy in low-load but not in high-load resistance training. J. Strength Cond. Res. 10.1519/jsc.0000000000003454, PMID: [Epub ahead of print] PubMed DOI
McArdle W. D., Katch F. I., Katch V. L. (2015). Exercise physiology: Nutrition, energy and human performance. Baltimore, Philadelphia: Lippincott Williams & Wilkins, 491–498.
McBride J. M., McCaulley G. O., Cormie P., Nuzzo J. L., Cavill M. J., Triplett N. T. (2009). Comparison of methods to quantify volume during resistance exercise. J. Strength Cond. Res. 23, 106–110. 10.1519/JSC.0b013e31818efdfem, PMID: PubMed DOI
Morrissey M. C., Harman E. A., Frykman P. N., Han K. H. (1998). Early phase differential effects of slow and fast barbell squat training. Am. J. Sports Med. 26, 221–230. PubMed
Munn J., Herbert R. D., Hancock M. J., Gandevia S. C. (2005). Resistance training for strength: effect of number of sets and contraction speed. Med. Sci. Sports Exerc. 37, 622–626. 10.1249/01.mss.0000177583.41245.f8, PMID: PubMed DOI
Neils C. M., Udermann B. E., Brice G. A., Winchester J. B., McGuigan M. R. (2005). Influence of contraction velocity in untrained individuals over the initial early phase of resistance training. J. Strength Cond. Res. 19, 883–887. 10.1519/R-15794.1, PMID: PubMed DOI
Nunes J. P., Grgic J., Cunha P. M., Ribeiro A. S., Schoenfeld B. J., de Salles B. F., et al. . (2020). What influence does resistance exercise order have on muscular strength gains and muscle hypertrophy? A systematic review and meta-analysis. Eur. J. Sport Sci. 28, 1–9. 10.1080/17461391.2020.1733672, PMID: PubMed DOI
Rogatzki M. J., Wright G. A., Mikat R. P., Brice A. G. (2014). Blood ammonium and lactate accumulation response to different training protocols using the parallel squat exercise. J. Strength Cond. Res. 28, 1113–1118. 10.1519/JSC.0b013e3182a1f84e, PMID: PubMed DOI
Sakamoto A., Sinclair P. (2006). Effect of movement velocity on the relationship between training load and the number of repetitions of bench press. J. Strength Cond. Res. 203, 523–527. 10.1519/16794.1, PMID: PubMed DOI
Sakamoto A., Sinclair P. J. (2012). Muscle activations under varying lifting speeds and intensities during bench press. Eur. J. Appl. Physiol. 112, 1015–1025. 10.1007/s00421-011-2059-0, PMID: PubMed DOI
Sampson J. A., Donohoe A., Groeller H. (2014). Effect of concentric and eccentric velocity during heavy-load non-ballistic elbow flexion resistance exercise. J. Sci. Med. Sport 17, 306–311. 10.1016/j.jsams.2013.04.012, PMID: PubMed DOI
Schoenfeld B. J., Grgic J., Ogborn D., Krieger J. W. (2017a). Strength and hypertrophy adaptations between low- versus high-load resistance training: a systematic review and meta-analysis. J. Strength Cond. Res. 31, 3508–3523. 10.1519/JSC.0000000000002200 PubMed DOI
Schoenfeld B. J., Ogborn D. I., Krieger J. W. (2015a). Effect of repetition duration during resistance training on muscle hypertrophy: a systematic review and meta-analysis. Sports Med. 45, 577–585. 10.1007/s40279-015-0304-0, PMID: PubMed DOI
Schoenfeld B. J., Ogborn D., Krieger J. W. (2017b). Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. Eur. J. Sport Sci. 35, 1073–1082. 10.1080/02640414.2016.1210197, PMID: PubMed DOI
Schoenfeld B. J., Peterson M. D., Ogborn D., Contreras B., Sonmez G. T. (2015b). Effects of low- vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. J. Strength Cond. Res. 29, 2954–2963. 10.1519/JSC.0000000000000958, PMID: PubMed DOI
Stastny P., Golas A., Blazek D., Maszczyk A., Wilk M., Pietraszewski P., et al. . (2017). A systematic review of surface electromyography analyses of the bench press movement task. PLoS One 12:e0171632. 10.1371/journal.pone.0171632, PMID: PubMed DOI PMC
Suchomel T. J., Wagle J. P., Douglas J., Taber C. B., Harden M., Haff G. G., et al. . (2019a). Implementing eccentric resistance training - part 1: a brief review of existing methods. J. Funct. Morphol. Kines. 4:38. 10.3390/jfmk4020038 PubMed DOI PMC
Suchomel T. J., Wagle J. P., Douglas J., Taber C. B., Harden M., Haff G. G., et al. . (2019b). Implementing eccentric resistance training—part 2: practical recommendations. J. Funct. Morphol. Kinesiol. 4:55. 10.3390/jfmk4030055 PubMed DOI PMC
Tanimoto M., Ishii N. (2006). Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J. Appl. Physiol. 100, 1150–1157. 10.1152/japplphysiol.00741.2005, PMID: PubMed DOI
Watanabe Y., Tanimoto M., Ohgane A., Sanada K., Miyachi M., Ishii N. (2013). Increased muscle size and strength from slow-movement, low-intensity resistance exercise and tonic force generation. J. Aging Phys. Act. 21, 71–84. 10.1123/japa.21.1.71, PMID: PubMed DOI
Wilk M., Gepfert M., Krzysztofik M., Golas A., Mostowik A., Maszczyk A., et al. . (2019a). The influence of grip width on training volume during the bench press with different movement tempos. J. Hum. Kinet. 68, 49–57. 10.2478/hukin-2019-0055, PMID: PubMed DOI PMC
Wilk M., Gepfert M., Krzysztofik M., Mostowik A., Filip A., Hajduk G., et al. . (2020a). Impact of duration of eccentric movement in the one-repetition maximum test result in the bench press among women. J. Sports Sci. Med. 19, 317–322. PMID: PubMed PMC
Wilk M., Golas A., Krzysztofik M., Nawrocka M., Zajac A. (2019b). The effects of eccentric cadence on power and velocity of the bar during the concentric phase of the bench press movement. J. Sports Sci. Med. 18, 191–197. PMID: PubMed PMC
Wilk M., Golas A., Stastny P., Nawrocka M., Krzysztofik M., Zajac A. (2018a). Does tempo of resistance exercise impact training volume? J. Hum. Kinet. 62, 241–250. 10.2478/hukin-2018-0034, PMID: PubMed DOI PMC
Wilk M., Golas A., Zmijewski P., Krzysztofik M., Filip A., Del Coso J., et al. . (2020b). The effects of the movement tempo on the one-repetition maximum bench press results. J. Hum. Kinet. 72, 151–159. 10.2478/hukin-2020-0001, PMID: PubMed DOI PMC
Wilk M., Krzysztofik M., Drozd M., Zajac A. (2020c). Changes of power output and velocity during successive sets of the bench press with different duration of eccentric movement. Int. J. Sports Physiol. Perform. 15, 162–167. 10.1123/ijspp.2019-0164, PMID: PubMed DOI
Wilk M., Krzysztofik M., Filip A., Zajac A., Bogdanis G. C., Lockie R. G. (2020e). Short-term blood flow restriction increases power output and bar velocity during the bench press. J. Strength Cond. Res. 10.1519/JSC.0000000000003649, PMID: [Epub ahead of print] PubMed DOI
Wilk M., Stastny P., Golas A., Nawrocka M., Jelen K., Zajac A., et al. . (2018b). Physiological responses to different neuromuscular movement task during eccentric bench press. Neuro Endo. Lett. 9, 26–32. PMID: PubMed
Wilk M., Tufano J. J., Zajac A. (2020d). The influence of movement tempo on acute neuromuscular, hormonal, and mechanical responses to resistance exercise-a mini review. J. Strength Cond. Res. 34, 2369–2383. 10.1519/JSC.0000000000003636, PMID: PubMed DOI
Williams K. J., Chapman D. W., Phillips E. J., Ball N. B. (2018). Load-power relationship during a countermovement jump: a joint level analysis. J. Strength Cond. Res. 32, 955–961. 10.1519/JSC.0000000000002432, PMID: PubMed DOI