Living on the edge: Crayfish as drivers to anoxification of their own shelter microenvironment
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38165988
PubMed Central
PMC10760702
DOI
10.1371/journal.pone.0287888
PII: PONE-D-23-02826
Knihovny.cz E-zdroje
- MeSH
- Decapoda (Crustacea) * MeSH
- ekologie MeSH
- hypoxie MeSH
- kyslík MeSH
- severní raci * MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyslík MeSH
- voda MeSH
Burrowing is a common trait among crayfish thought to help species deal with adverse environmental challenges. However, little is known about the microhabitat ecology of crayfish taxa in relation to their burrows. To fill this knowledge gap, we assessed the availability of oxygen inside the crayfish shelter by series of in-vivo and in-silico modelling experiments. Under modeled condition, we found that, except for the entrance region of the 200 mm, a flooded burrow microenvironment became anoxic within 8 h, on average. Multiple 12-hour day-night cycles, with burrows occupied by crayfish for 12 h and empty for 12 h, were not sufficient for refreshing the burrow microenvironment. We then examined the degree to which crayfish species with different propensities for burrowing are tolerant of self-created anoxia. From these experiments, primary and secondary burrowers showed best and most consistent tolerance-exhibiting ≥ 64% survival to anoxia and 25-91% survival of ≥ 9 h at anoxia, respectively. Tertiary burrowers exhibited little to no tolerance of anoxia with 0-50% survival to anoxia and only one species exhibiting survival (2%) of ≥ 9 h at anoxia. Results suggest that moderate to strongly burrowing crayfish can quickly draw down the dissolved oxygen in burrow water but appear to have conserved a legacy of strong tolerance of anoxia from their monophyletic ancestors-the lobsters-whereas tertiary burrowers have lost (or never evolved) this ability.
Central Fisheries Research Institute Yoichi Hokkaido Japan
Coastal and Marine Research Centre Griffith University Gold Coast Queensland Australia
Faculty of Physics West University of Timisoara Timisoara Romania
Zobrazit více v PubMed
Figler MH, Blank GS, Peeke HVS. Maternal territoriality as an offspring defense strategy in red swamp crayfish (Procambarus clarkii, Girard). Aggress Behav. 2001;27: 391–403. doi: 10.1002/ab.1024 DOI
Millidine KJ, Armstrong JD, Metcalfe NB. Presence of shelter reduces maintenance metabolism of juvenile salmon. Funct Ecol. 2006;20: 839–845. doi: 10.1111/j.1365-2435.2006.01166.x DOI
Ford JR, Shima JS, Swearer SE. Interactive effects of shelter and conspecific density shape mortality, growth, and condition in juvenile reef fish. Ecology. 2016;97: 1373–1380. doi: 10.1002/ecy.1436 PubMed DOI
Takahashi K, Yamaguchi E, Fujiyama N, Nagayama T. The effects of shelter quality and prior residence on marmorkrebs (marbled crayfish). J Exp Biol. 2019;222. doi: 10.1242/jeb.197301 PubMed DOI
Carroll SP. Conciliation biology: the eco-evolutionary management of permanently invaded biotic systems. Evol Appl. 2011;4: 184–199. doi: 10.1111/j.1752-4571.2010.00180.x PubMed DOI PMC
Harrison JF. Handling and Use of Oxygen by Pancrustaceans: Conserved Patterns and the Evolution of Respiratory Structures. Integr Comp Biol. 2015;55: 802–815. doi: 10.1093/icb/icv055 PubMed DOI
Schultz MB, Smith SA, Horwitz P, Richardson AMM, Crandall KA, Austin CM. Evolution underground: A molecular phylogenetic investigation of Australian burrowing freshwater crayfish (Decapoda: Parastacidae) with particular focus on Engaeus Erichson. Mol Phylogenet Evol. 2009;50: 580–598. doi: 10.1016/j.ympev.2008.11.025 PubMed DOI
Berthelot C, Villar D, Horvath JE, Odom DT, Flicek P. Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression. Nat Ecol Evol. 2018;2: 152–163. doi: 10.1038/s41559-017-0377-2 PubMed DOI PMC
Rudman SM, Barbour MA, Csilléry K, Gienapp P, Guillaume F, Hairston NG Jr, et al.. What genomic data can reveal about eco-evolutionary dynamics. Nat Ecol Evol. 2018;2: 9–15. doi: 10.1038/s41559-017-0385-2 PubMed DOI
Cook CN, Sgrò CM. Poor understanding of evolutionary theory is a barrier to effective conservation management. Conserv Lett. 2018; e12619. doi: 10.1111/conl.12619 DOI
Pacioglu O, Theissinger K, Alexa A, Samoilă C, Sîrbu OI, Schrimpf A, et al.. Multifaceted implications of the competition between native and invasive crayfish: a glimmer of hope for the native’s long-term survival. Biol Invasions. 2020;22: 827–842. doi: 10.1007/s10530-019-02136-0 DOI
Ashley M V., Willson MF, Pergams ORW O’Dowd DJ, Gende SM, Brown JS. Evolutionarily enlightened management. Biol Conserv. 2003;111: 115–123. doi: 10.1016/S0006-3207(02)00279-3 DOI
Crandall KA, De Grave S. An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. J Crustac Biol. 2017;37: 615–653. doi: 10.1093/jcbiol/rux070 DOI
Florey CL, Moore PA. Analysis and description of burrow structure in four species of freshwater crayfishes (Decapoda: Astacoidea: Cambaridae) using photogrammetry to recreate casts as 3D models. J Crustac Biol. 2019. [cited 16 Oct 2019]. doi: 10.1093/jcbiol/ruz075 DOI
Atkinson RJA, Eastman LB. Burrow dwelling in Crustacea. The natural history of the Crustacea. 2015. pp. 100–140.
Hobbs HH. Biology of Freshwater Crayfish. J Crustac Biol. 2002;22: 969–969. doi: 10.1163/20021975-99990306 DOI
Taylor CA, Schuster GA, Cooper JE, DiStefano RJ, Eversole AG, Hamr P, et al.. A Reassessment of the Conservation Status of Crayfishes of the United States and Canada after 10+ Years of Increased Awareness. Fisheries. 2007;32: 372–389. doi: 10.1577/1548-8446(2007)32[372:AROTCS]2.0.CO;2 DOI
Liu S, Zhao L, Xiao C, Fan W, Cai Y, Pan Y, et al.. Review of Artificial Downwelling for Mitigating Hypoxia in Coastal Waters. Water. 2020;12: 2846. doi: 10.3390/w12102846 DOI
Wang SY, Lau K, Lai K-P, Zhang J-W, Tse AC-K, Li J-W, et al.. Hypoxia causes transgenerational impairments in reproduction of fish. Nat Commun. 2016;7: 12114. doi: 10.1038/ncomms12114 PubMed DOI PMC
Pârvulescu L, Zaharia C. Current limitations of the stone crayfish distribution in Romania: Implications for its conservation status. Limnologica. 2013;43: 143–150. doi: 10.1016/J.LIMNO.2012.07.008 DOI
Streissl F, Hödl W. Habitat and shelter requirements of the stone crayfish, Austropotamobius torrentium Schrank. Hydrobiol 2002. 4771. 2002;477: 195–199. doi: 10.1023/A:1021094309738 DOI
Demers A, Souty-Grosset C, Trouilhé MC, Füreder L, Renai B, Gherardi F. Tolerance of three European native species of crayfish to hypoxia. Hydrobiologia. 2006;560: 425–432. doi: 10.1007/s10750-005-1466-9 DOI
Gäde G. Effects of oxygen deprivation during anoxia and muscular work on the energy metabolism of the crayfish, Orconectes limosus. Comp Biochem Physiol Part A Physiol. 1984;77: 495–502. doi: 10.1016/0300-9629(84)90217-2 DOI
Green SR, Storey KB. Regulation of crayfish, Orconectes virilis, tail muscle lactate dehydrogenase (LDH) in response to anoxic conditions is associated with alterations in phosphorylation patterns. Comp Biochem Physiol Part B Biochem Mol Biol. 2016;202: 67–74. doi: 10.1016/j.cbpb.2016.08.004 PubMed DOI
Pârvulescu L, Zaharia C. Distribution and ecological preferences of noble crayfish in the Carpathian Danube basin: biogeographical insights into the species history. Hydrobiologia. 2014;726: 53–63. doi: 10.1007/s10750-013-1751-y DOI
Toro-Chacon J, Flora Tickell, González R, Victoriano PF, Fernández-Urruzola I, Urbina MA. Aerobic and anaerobic metabolic scaling in the burrowing freshwater crayfish Parastacus pugnax. J Comp Physiol B 2021. 2021; 1–12. doi: 10.1007/s00360-021-01374-w PubMed DOI
Grow L, Merchant H. The burrow habitat of the crayfish, Cambarus diogenes diogenes (Girard) (Girard). Am Midl Nat. 1980;103: 231. doi: 10.2307/2424621 DOI
Wang F, Tessier A, Hare L. Oxygen measurements in the burrows of freshwater insects. Freshw Biol. 2001;46: 317–327. doi: 10.1046/j.1365-2427.2001.00678.x DOI
Dornik A, Ion MC, Chețan MA, Pârvulescu L. Soil-Related Predictors for Distribution Modelling of Four European Crayfish Species. Water 2021, Vol 13, Page 2280. 2021;13: 2280. doi: 10.3390/W13162280 DOI
Pârvulescu L, Zaharia C, Groza M-I, Csillik O, Satmari A, Drăguţ L. Flash-flood potential: a proxy for crayfish habitat stability. Ecohydrology. 2016;9: 1507–1516. doi: 10.1002/eco.1744 DOI
Bearden RA, Tompkins EM, Huryn AD. Motion‐triggered laser photography reveals fine‐scale activity patterns for burrowing crayfish. Freshw Biol. 2021;00: fwb.13720. doi: 10.1111/fwb.13720 DOI
Kouba A, Tíkal J, Císař P, Veselý L, Fořt M, Příborský J, et al.. The significance of droughts for hyporheic dwellers: evidence from freshwater crayfish. Sci Rep. 2016;6: 26569. doi: 10.1038/srep26569 PubMed DOI PMC
Naura M, Robinson M. Principles of using River Habitat Survey to predict the distribution of aquatic species: an example applied to the native white-clawed crayfishAustropotamobius pallipes. Aquat Conserv Mar Freshw Ecosyst. 1998;8: 515–527. doi: 10.1002/(SICI)1099-0755(199807/08)8:4<515::AID-AQC261>3.0.CO;2-J DOI
Stoeckel JA, Helms BS, Cash E. Evaluation of a Crayfish Burrowing Chamber Design With Simulated Groundwater Flow. J Crustac Biol. 2011;31: 50–58. doi: 10.1651/09-3271.1 DOI
Ames CW, Helms BS, Stoeckel JA. Habitat mediates the outcome of a cleaning symbiosis for a facultatively burrowing crayfish. Freshw Biol. 2015;60: 989–999. doi: 10.1111/fwb.12559 DOI
Govaert L, Fronhofer EA, Lion S, Eizaguirre C, Bonte D, Egas M, et al.. Eco-evolutionary feedbacks—Theoretical models and perspectives. Funct Ecol. 2019;33: 13–30. doi: 10.1111/1365-2435.13241 DOI
Breithaupt T. Fan organs of crayfish enhance chemical information flow. Biol Bull. 2001;200: 150–4. doi: 10.2307/1543308 PubMed DOI
Burggren WW, McMahon BR. An Analysis of Scaphognathite Pumping Performance in the Crayfish Orconectes virilis: Compensatory Changes to Acute and Chronic Hypoxic Exposure. Physiol Zool. 1983;56: 309–318. doi: 10.1086/physzool.56.3.30152595 DOI
Stoeckel JA, Szoka M, Abdelrahman HA, Davis JD, Blersch DM, Helms BS. Crayfish chimneys function as burrow-ventilation structures. J Crustac Biol. 2021;41. doi: 10.1093/JCBIOL/RUAB045 DOI
Swain R., Marker P.F., Richardson AMM. RESPIRATORY RESPONSES TO HYPOXIA IN STREAM-DWELLING (ASTACOPSIS-FRANKLINII) AND BURROWING (PARASTACOIDES-TASMANICUS) PARASTACID CRAYFISH. Comp Biochem Physiol a-Physiology. 1987;87: 813–817.
Simčič T, Pajk F, Jaklič M, Brancelj A, Vrezec A. The thermal tolerance of crayfish could be estimated from respiratory electron transport system activity. J Therm Biol. 2014;41: 21–30. doi: 10.1016/j.jtherbio.2013.06.003 PubMed DOI
Taylor EW, Wheatly MG. Ventilation, heart rate and respiratory gas exchange in the crayfish Austropotamobius pallipes (Lereboullet) submerged in normoxic water and following 3 h exposure in air at 15°C. J Comp Physiol □ B. 1980;138: 67–78. doi: 10.1007/BF00688737 DOI
Gutekunst J, Andriantsoa R, Falckenhayn C, Hanna K, Stein W, Rasamy J, et al.. Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nat Ecol Evol. 2018;2: 567–573. doi: 10.1038/s41559-018-0467-9 PubMed DOI
Maiakovska O, Andriantsoa R, Tönges S, Legrand C, Gutekunst J, Hanna K, et al.. Genome analysis of the monoclonal marbled crayfish reveals genetic separation over a short evolutionary timescale. Commun Biol. 2021;4: 74. doi: 10.1038/s42003-020-01588-8 PubMed DOI PMC
Hollander M, Wolfe DA, Chicken E. Nonparametric Statistical Methods. New York: John Wiley & Sons; 1973.
Bauer DF. Constructing confidence sets using rank statistics. J Am Stat Assoc. 1972;67: 687–690. doi: 10.1080/01621459.1972.10481279 DOI
R Core Team. R: A Language and Environment for Statistical Computing. R Core Team. Viena, Austria; 2020. Available: http://www.r-project.org/
Fero K, Simon JL, Jourdie V, Moore PA. Consequences of social dominance on crayfish resource use. Behaviour. 2007;144: 61–82. doi: 10.1163/156853907779947418 DOI
Caine EA. Comparative Ecology of Epigean and Hypogean Crayfish (Crustacea: Cambaridae) from Northwestern Florida. Am Midl Nat. 1978;99: 315. doi: 10.2307/2424809 DOI
Newcombe KJ. The Ph Tolerance of the Crayfish Parastacoides Tasmanicus (Erichson) (Decapoda, Parastacidae). Crustaceana. 1975;29: 231–234. doi: 10.1163/156854075X00261 DOI
Noro CK, Buckup L. The burrows of Parastacus defossus (Decapoda: Parastacidae), a fossorial freshwater crayfish from Southern Brazil. Zoologia. 2010;27: 341–346. doi: 10.1590/S1984-46702010000300004 DOI
McMahon BR, Wilkes PRH. Emergence Responses and Aerial Ventilation in Normoxic and Hypoxic Crayfish Orconectes rusticus. Physiol Zool. 1983;56: 133–141. doi: 10.1086/physzool.56.2.30156046 DOI
Mauro NA, Thompson C. Hypoxia adaptation in the crayfish procambarus clarki. Comp Biochem Physiol—Part A Physiol. 1984;79: 73–75. doi: 10.1016/0300-9629(84)90709-6 DOI
Morris S, Callaghan J. The emersion response of the Australian Yabby Cherax destructor to environmental hypoxia and the respiratory and metabolic responses to consequent air-breathing. J Comp Physiol—B Biochem Syst Environ Physiol. 1998;168: 389–398. doi: 10.1007/s003600050158 DOI
Bierbower SM, Cooper RL. The effects of acute carbon dioxide on behavior and physiology in Procambarus clarkii. J Exp Zool Part A Ecol Genet Physiol. 2010;313A: 484–497. doi: 10.1002/jez.620 PubMed DOI
Broughton RJ, Marsden ID, Hill J V., Glover CN. Behavioural, physiological and biochemical responses to aquatic hypoxia in the freshwater crayfish, Paranephrops zealandicus. Comp Biochem Physiol -Part A Mol Integr Physiol. 2017;212: 72–80. doi: 10.1016/j.cbpa.2017.07.013 PubMed DOI
Diehl KM, Storer NM, Wells HD, Davis DA, Loughman ZJ, Graham ZA. On the surface or down below: Field observations reveal a high degree of surface activity in a burrowing crayfish, the Little Brown Mudbug (Lacunicambarus thomai). PLoS One. 2022;17: e0273540. doi: 10.1371/journal.pone.0273540 PubMed DOI PMC
Chang ES, Keller R, Chang SA. Quantification of crustacean hyperglycemic hormone by ELISA in hemolymph of the lobster, Homarus americanus, following various stresses. Gen Comp Endocrinol. 1998;111: 359–366. doi: 10.1006/gcen.1998.7120 PubMed DOI
Maciel JES, Souza F, Valle S, Kucharski LC, da Silva RSM. Lactate metabolism in the muscle of the crab Chasmagnathus granulatus during hypoxia and post-hypoxia recovery. Comp Biochem Physiol—A Mol Integr Physiol. 2008;151: 61–65. doi: 10.1016/j.cbpa.2008.05.178 PubMed DOI
da Silva-Castiglioni D, Oliveira GT, Buckup L. Metabolic responses of Parastacus defossus and Parastacus brasiliensis (Crustacea, Decapoda, Parastacidae) to hypoxia. Comp Biochem Physiol—A Mol Integr Physiol. 2010;156: 436–444. doi: 10.1016/j.cbpa.2010.03.025 PubMed DOI
Fujimori T, Abe H. Physiological roles of free D- and L-alanine in the crayfish Procambarus clarkii with special reference to osmotic and anoxic stress responses. Comp Biochem Physiol—A Mol Integr Physiol. 2002;131: 893–900. doi: 10.1016/s1095-6433(02)00006-5 PubMed DOI
Morris S, Bridges CR, Grieshaber MK. The potentiating effect of purine bases and some of their derivatives on the oxygen affinity of haemocyanin from the crayfish Austropotamobius pallipes. J Comp Physiol B. 1986;156: 431–440. doi: 10.1007/BF01101106 DOI
Hervant F, Mathieu J, Barré H, Simon K, Pinon C. Comparative study on the behavioral, ventilatory, and respiratory responses of hypogean and epigean crustaceans to long-term starvation and subsequent feeding. Comp Biochem Physiol—A Physiol. 1997;118: 1277–1283. doi: 10.1016/S0300-9629(97)00047-9 DOI
Racotta IS, Hernández-Herrera R. Metabolic responses of the white shrimp, Penaeus vannamei, to ambient ammonia. Comp Biochem Physiol—A Mol Integr Physiol. 2000;125: 437–443. doi: 10.1016/s1095-6433(00)00171-9 PubMed DOI
Zhang L, Song Z, Zhong S, Gan J, Liang H, Yu Y, et al.. Acute hypoxia and reoxygenation induces oxidative stress, glycometabolism, and oxygen transport change in red swamp crayfish (Procambarus clarkii): Application of transcriptome profiling in assessment of hypoxia. Aquac Reports. 2022;23: 101029. doi: 10.1016/J.AQREP.2022.101029 DOI
Zou E, Du N, Lai W. The effects of severe hypoxia on lactate and glucose concentrations in the blood of the Chinese freshwater crab Eriocheir sinensis (Crustacea: Decapoda). Comp Biochem Physiol—A Physiol. 1996;114: 105–109. doi: 10.1016/0300-9629(95)02101-9 DOI
Santos EA, Baldisseroto B, Blanchini A, Colares EP, Nery LEM, Manzoni GC. Respiratory mechanisms and metabolic adaptations of an intertidal crab, Chasmagnathus granulata (Dana, 1851). Comp Biochem Physiol—Part A Physiol. 1987;88: 21–25. doi: 10.1016/0300-9629(87)90092-2 DOI
Brown-Peterson NJ, Manning CS, Denslow ND, Brouwer M. Impacts of cyclic hypoxia on reproductive and gene expression patterns in the grass shrimp: Field versus laboratory comparison. Aquat Sci. 2011;73: 127–141. doi: 10.1007/s00027-010-0166-3 DOI
Oliveira GP, Dias CM, Pelosi P, Rocco PRM. Understanding the mechanisms of glutamine action in critically ill patients. An Acad Bras Cienc. 2010;82: 417–430. doi: 10.1590/s0001-37652010000200018 PubMed DOI
Bonvillain CP, Rutherford DA, Kelso WE, Green CC. Physiological biomarkers of hypoxic stress in red swamp crayfish Procambarus clarkii from field and laboratory experiments. Comp Biochem Physiol—A Mol Integr Physiol. 2012;163: 15–21. doi: 10.1016/j.cbpa.2012.04.015 PubMed DOI
Li T, Brouwer M. Hypoxia-inducible factor, gsHIF, of the grass shrimp Palaemonetes pugio: Molecular characterization and response to hypoxia. Comp Biochem Physiol—B Biochem Mol Biol. 2007;147: 11–19. doi: 10.1016/j.cbpb.2006.12.018 PubMed DOI
Soñanez-Organis JG, Peregrino-Uriarte AB, Gómez-Jiménez S, López-Zavala A, Forman HJ, Yepiz-Plascencia G. Molecular characterization of hypoxia inducible factor-1 (HIF-1) from the white shrimp Litopenaeus vannamei and tissue-specific expression under hypoxia. Comp Biochem Physiol—C Toxicol Pharmacol. 2009;150: 395–405. doi: 10.1016/j.cbpc.2009.06.005 PubMed DOI
Wang P, Xing C, Wang J, Su Y, Mao Y. Evolutionary adaptation analysis of immune defense and hypoxia tolerance in two closely related Marsupenaeus species based on comparative transcriptomics. Fish Shellfish Immunol. 2019;92: 861–870. doi: 10.1016/j.fsi.2019.06.055 PubMed DOI
Cota-Ruiz K, Peregrino-Uriarte AB, Felix-Portillo M, Martínez-Quintana JA, Yepiz-Plascencia G. Expression of fructose 1,6-bisphosphatase and phosphofructokinase is induced in hepatopancreas of the white shrimp Litopenaeus vannamei by hypoxia. Mar Environ Res. 2015;106: 1–9. doi: 10.1016/j.marenvres.2015.02.003 PubMed DOI
Bouchard RW. Taxonomy, ecology and phylogeny of the subgenus Depressicambarus, with the description of a new species from Florida and redescriptions of Cambarus graysoni, Cambarus latimanus and Cambarus striatus (Decapoda: Cambaridae). Bull Alabama Museum Nat Hist. 1978;28: 27–60.
Owen CL, Bracken-Grissom H, Stern D, Crandall KA. A synthetic phylogeny of freshwater crayfish: Insights for conservation. Philos Trans R Soc B Biol Sci. 2015;370: 1–10. doi: 10.1098/rstb.2014.0009 PubMed DOI PMC
Riek EF. The Australian freshwater crayfish (Crustacea: Decapoda: Parastacidae), with descriptions of a new species. Aust J Zool. 1969;17: 855–918. doi: 10.1071/ZO9690855 DOI
Scholtz G, Richter S. Phylogenetic systematics of the reptantian Decapoda (Crustacea, Malacostraca). Zool J Linn Soc. 1995;113: 289–328. doi: 10.1006/zjls.1995.0011 DOI
Toon A, Pérez-Losada M, Schweitzer CE, Feldmann RM, Carlson M, Crandall KA. Gondwanan radiation of the Southern Hemisphere crayfishes (Decapoda: Parastacidae): evidence from fossils and molecules. J Biogeogr. 2010;37: 2275–2290. doi: 10.1111/j.1365-2699.2010.02374.x DOI
Bracken-Grissom HD, Ahyong ST, Wilkinson RD, Feldmann RM, Schweitzer CE, Breinholt JW, et al.. The Emergence of Lobsters: Phylogenetic Relationships, Morphological Evolution and Divergence Time Comparisons of an Ancient Group (Decapoda: Achelata, Astacidea, Glypheidea, Polychelida). Syst Biol. 2014;63: 457–479. doi: 10.1093/sysbio/syu008 PubMed DOI
Crandal KA, Harris DJ, Fetzner JW. The monophyletic origin of freshwater crayfish estimated from nuclear and mitochondrial DNA sequences. Proc R Soc London Ser B Biol Sci. 2000;267: 1679–1686. doi: 10.1098/rspb.2000.1195 PubMed DOI PMC
Kiko R, Hauss H, Dengler M, Sommer S, Melzner F. The squat lobster Pleuroncodes monodon tolerates anoxic “dead zone” conditions off Peru. Mar Biol. 2015;162: 1913–1921. doi: 10.1007/s00227-015-2709-6 DOI
Wishner KF, Seibel BA, Roman C, Deutsch C, Outram D, Shaw CT, et al.. Ocean deoxygenation and zooplankton: Very small oxygen differences matter. Sci Adv. 2018;4: eaau5180. doi: 10.1126/sciadv.aau5180 PubMed DOI PMC
Yannicelli B, Paschke K, González RR, Castro LR. Metabolic responses of the squat lobster (Pleuroncodes monodon) larvae to low oxygen concentration. Mar Biol. 2013;160: 961–976. doi: 10.1007/s00227-012-2147-7 DOI
Smith JJ, Hasiotis ST, Woody DT, Kraus MJ. Paleoclimatic Implications of Crayfish-Mediated Prismatic Structures in Paleosols of the Paleogene Willwood Formation, Bighorn Basin, Wyoming, U.S.A. J Sediment Res. 2008;78: 323–334. doi: 10.2110/jsr.2008.040 DOI
Copilaş-Ciocianu D, Fišer C, Borza P, Petrusek A. Is subterranean lifestyle reversible? Independent and recent large-scale dispersal into surface waters by two species of the groundwater amphipod genus Niphargus. Mol Phylogenet Evol. 2018;119: 37–49. doi: 10.1016/j.ympev.2017.10.023 PubMed DOI
Stern DB, Breinholt J, Pedraza-Lara C, López-Mejía M, Owen CL, Bracken-Grissom H, et al.. Phylogenetic evidence from freshwater crayfishes that cave adaptation is not an evolutionary dead-end. Evolution (N Y). 2017;71: 2522–2532. doi: 10.1111/evo.13326 PubMed DOI PMC
Ruhr IM, McCourty H, Bajjig A, Crossley DA, Shiels HA, Galli GLJ. Developmental plasticity of cardiac anoxia-tolerance in juvenile common snapping turtles (Chelydra serpentina). Proc R Soc B Biol Sci. 2019;286: 20191072. doi: 10.1098/rspb.2019.1072 PubMed DOI PMC
Dalosto MM, Palaoro A V., Santos S. Mother-offspring relationship in the neotropical burrowing crayfish Parastacus pilimanus (von Martens, 1869) (Decapoda, Parastacidae). Crustaceana. Brill; 2012. pp. 1305–1315. doi: 10.2307/41720776 DOI