• This record comes from PubMed

Insights from the past: Invasion trajectory and niche trends of a global freshwater invader

. 2024 Jan ; 30 (1) : e17059.

Language English Country Great Britain, England Media print

Document type Journal Article

Grant support
European Regional Development Fund
PID2020-120026RB-I00 Ministerio de Ciencia e Innovación
PRTR-C17.I1 European Union-NextGenerationEU

Freshwater ecosystems are invaded by a non-random selection of taxa, among which crayfish stand out with successful examples worldwide. Species distribution models (SDMs) have been used to detect suitable areas for invasive species and predict their potential distributions. However, these prediction exercises assume the stability of realized environmental niches, which is uncertain during invasion. Worldwide evaluations involving cosmopolitan invaders may be particularly useful but have seldom been considered. Focusing on the successful invasion history of the red swamp crayfish, Procambarus clarkii, we assessed its geographic expansion and niche trends over time. Based on global occurrences from 1854 to 2022, multiple sequential SDMs have been implemented based on a set of bioclimatic variables. The environmental suitability for each period was projected through to the next period(s) using an ensemble procedure of commonly used SDM algorithms. As the records of the species are known, it was possible to check whether the modelling projections were concordant with the observed expansion of red swamp crayfish at a global scale. This also permitted analysis of its realized niche, and its dynamics, during different expansion phases. SDM maps based on past species records showed concordance with the known crayfish distributions and yielded similar spatial patterns with outputs overperforming random combinations of cells in term of suitability. The results also reflect the stability of the species niche, which despite some expansions during the invasion process, changed little in terms of main position in functional space over time. SDMs developed in the early stages of invasion provide useful insights but also tend to underpredict the potential range compared to models that were built for later stages. Our approach can be easily transferable to other well-documented taxa and represents valuable evidence for validating the use of SDMs, considering a highly dynamic world where biogeographical barriers are often bypassed.

See more in PubMed

Acevedo-Limón, L., Oficialdegui, F. J., Sánchez, M. I., & Clavero, M. (2020). Historical, human, and environmental drivers of genetic diversity in the red swamp crayfish (Procambarus clarkii) invading the Iberian Peninsula. Freshwater Biology, 65(8), 1460-1474.

Aguirre-Gutierrez, J., Serna-Chavez, H. M., Villalobos-Arambula, A. R., Perez de la Raes, J., & Raes, N. (2015). Similar but not equivalent: Ecological niche comparison across closely related Mexican white pines. Diversity and Distributions, 21, 245-257.

Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22(1), 42-47. https://doi.org/10.1016/j.tree.2006.09.010

Barbet-Massin, M., Rome, Q., Villemant, C., & Courchamp, F. (2018). Can species distribution models really predict the expansion of invasive species? PLoS One, 13(3), 1-14. https://doi.org/10.1371/journal.pone.0193085

Bates, O. K., & Bertelsmeier, C. (2021). Climatic niche shifts in introduced species. Current Biology, 31(19), R1252-R1266. https://doi.org/10.1016/j.cub.2021.08.035

Briscoe Runquist, R. D., Lake, T., Tiffin, P., & Moeller, D. A. (2019). Species distribution models throughout the invasion history of Palmer amaranth predict regions at risk of future invasion and reveal challenges with modeling rapidly shifting geographic ranges. Scientific Reports, 9(1), 1-12. https://doi.org/10.1038/s41598-018-38054-9

Broennimann, O., Cola, V. D., & Guisan, A. (2022). Ecospat: Spatial ecology miscellaneous methods. R package version 3.4. https://cran.r-project.org/package=ecospat

Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M. J., Randin, C., Zimmermann, N. E., Graham, C. H., & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481-497. https://doi.org/10.1111/j.1466-8238.2011.00698.x

Cancellario, T., Laini, A., Wood, P. J., & Guareschi, S. (2023). Among demons and killers: Current and future potential distribution of two hyper successful invasive gammarids. Biological Invasions, 25, 1627-1642. https://doi.org/10.1007/s10530-023-03000-y

Capinha, C., & Anastácio, P. (2011). Assessing the environmental requirements of invaders using ensembles of distribution models. Diversity and Distributions, 17(1), 13-24. https://doi.org/10.1111/j.1472-4642.2010.00727.x

Clavero, M. (2022). The King's aquatic desires: 16th-century fish and crayfish introductions into Spain. Fish and Fisheries, 23, 1251-1263. https://doi.org/10.1111/faf.12680

Clavero, M., Ninyerola, M., Hermoso, V., Filipe, A. F., Pla, M., Villero, D., Brotons, L., & Delibes, M. (2017). Historical citizen science to understand and predict climate-driven trout decline. Proceedings of the Royal Society B: Biological Sciences, 284(1846), 20161979. https://doi.org/10.1098/rspb.2016.1979

Cuthbert, R. N., Pattison, Z., Taylor, N. G., Verbrugge, L., Diagne, C., Ahmed, D. A., Leroy, B., Angulo, E., Briski, E., Capinha, C., Catford, J. A., Dalu, T., Essl, F., Gozlan, R. E., Haubrock, P. J., Kourantidou, M., Kramer, A. M., Renault, D., Wasserman, R. J., & Courchamp, F. (2021). Global economic costs of aquatic invasive alien species. Science of the Total Environment, 775, 145238. https://doi.org/10.1016/j.scitotenv.2021.145238

Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D'Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R. G., Hordijk, W., Salamin, N., & Guisan, A. (2017). Ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6), 774-787. https://doi.org/10.1111/ecog.02671

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27-46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

Dudgeon, D. (2020). Freshwater biodiversity: Status, threats and conservation (p. 514). Cambridge University Press.

Eskildsen, A., le Roux, P. C., Heikkinen, R. K., Høye, T. T., Kissling, W. D., Pöyry, J., Wisz, M. S., & Luoto, M. (2013). Testing species distribution models across space and time: High latitude butterflies and recent warming. Global Ecology and Biogeography, 22(12), 1293-1303. https://doi.org/10.1111/geb.12078

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315.

Gallardo, B., & Aldridge, D. C. (2020). Priority setting for invasive species management by the water industry. Water Research, 178, 115771. https://doi.org/10.1016/j.watres.2020.115771

Gallardo, B., Zieritz, A., & Aldridge, D. C. (2015). The importance of the human footprint in shaping the global distribution of terrestrial, freshwater and marine invaders. PLoS One, 10(5), 1-17. https://doi.org/10.1371/journal.pone.0125801

Gherardi, F. (2006). Crayfish invading Europe: The case study of Procambarus clarkii. Marine and Freshwater Behaviour and Physiology, 39(3), 175-191. https://doi.org/10.1080/10236240600869702

Guareschi, S., Cancellario, T., Oficialdegui, F. J., & Clavero, M. (2023). Insights from the past: Invasion trajectory and niche trends of a global freshwater invader. Open Science Framework. https://doi.org/10.17605/OSF.IO/3NHXS

Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., & Kueffer, C. (2014). Unifying niche shift studies: Insights from biological invasions. Trends in Ecology and Evolution, 29(5), 260-269. https://doi.org/10.1016/j.tree.2014.02.009

Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution models: With applications in R. Cambridge University Press.

Guo, W. Y., Lambertini, C., Li, X. Z., Meyerson, L. A., & Brix, H. (2013). Invasion of old world phragmites australis in the new world: Precipitation and temperature patterns combined with human influences redesign the invasive niche. Global Change Biology, 19(11), 3406-3422. https://doi.org/10.1111/gcb.12295

Hayes, K. R., & Barry, S. C. (2008). Are there any consistent predictors of invasion success? Biological Invasions, 10(4), 483-506. https://doi.org/10.1007/s10530-007-9146-5

Heiberger, R. M., & Holland, B. (2015). Statistical analysis and data display: An intermediate course with examples in R (2nd ed.). Springer.

Hijmans, R. (2022). Raster: Geographic data analysis and modeling. R Package Version 3.5-29. https://CRAN.R-project.org/package=raster

Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. (2020). Dismo: Species distribution modeling. R Package Version 1.3-3. https://CRAN.R-project.org/package=dismo

Hill, M. P., Gallardo, B., & Terblanche, J. S. (2017). A global assessment of climatic niche shifts and human influence in insect invasions. Global Ecology and Biogeography, 26, 679-689.

Hobbs, H. H., & Lodge, D. M. (2010). Decapoda. In J. H. Thorp & A. P. Covich (Eds.), Ecology and classification of North American freshwater invertebrates (pp. 901-967). Academic Press.

Hochkirch, A., Samways, M. J., Gerlach, J., Böhm, M., Williams, P., Cardoso, P., Cumberlidge, N., Stephenson, P. J., Seddon, M. B., Clausnitzer, V., Borges, P. A. V., Mueller, G. M., Pearce-Kelly, P., Raimondo, D. C., Danielczak, A., & Dijkstra, K. D. B. (2021). A strategy for the next decade to address data deficiency in neglected biodiversity. Conservation Biology, 35(2), 502-509. https://doi.org/10.1111/cobi.13589

Hui, C. (2022). The dos and don'ts for predicting invasion dynamics with species distribution models. Biological Invasions, 25(4), 947-953. https://doi.org/10.1007/s10530-022-02976-3

Hulme, P. E. (2017). Climate change and biological invasions: Evidence, expectations, and response options. Biological Review, 92(3), 1297-1313. https://doi.org/10.1111/brv.12282

Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427.

IPBES. (2019). In E. S. Brondizio, J. Settele, S. Díaz, & H. T. Ngo (Eds.), Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services (p. 1148). IPBES Secretariat. https://doi.org/10.5281/zenodo.3831673

Jiménez-Valverde, A., Peterson, A. T., Soberón, J., Overton, J. M., Aragón, P., & Lobo, J. M. (2011). Use of niche models in invasive species risk assessments. Biological Invasions, 13(12), 2785-2797. https://doi.org/10.1007/s10530-011-9963-4

Jourdan, J., Riesch, R., & Cunze, S. (2021). Off to new shores: Climate niche expansion in invasive mosquitofish (Gambusia spp.). Ecology and Evolution, 11(24), 18369-18400. https://doi.org/10.1002/ece3.8427

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4, 1-20. https://doi.org/10.1038/sdata.2017.122

Karger, D. N., & Zimmermann, N. E. (2018). CHELSAcruts-High resolution temperature and precipitation timeseries for the 20th century and beyond. EnviDat. https://doi.org/10.16904/envidat.159

Larson, E. R., & Olden, J. D. (2012). Using avatar species to model the potential distribution of emerging invaders. Global Ecology and Biogeography, 21(11), 1114-1125. https://doi.org/10.1111/j.1466-8238.2012.00758.x

Leung, B., Lodge, D. M., Finnoff, D., Shogren, J. F., Lewis, M. A., & Lamberti, G. (2002). An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proceedings of the Royal Society B: Biological Sciences, 269(1508), 2407-2413. https://doi.org/10.1098/rspb.2002.2179

Liu, C., Wolter, C., Courchamp, F., Roura-Pascual, N., & Jeschke, J. M. (2022). Biological invasions reveal how niche change affects the transferability of species distribution models. Ecology, 103, e3719. https://doi.org/10.1002/ecy.3719

Liu, C., Wolter, C., Xian, W., & Jeschke, J. M. (2020). Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23643-23651. https://doi.org/10.1073/pnas.2004289117

Lockwood, J. L., Cassey, P., & Blackburn, T. (2005). The role of propagule pressure in explaining species invasions. Trends in Ecology & Evolution, 20(5), 223-228.

Loureiro, T. G., Anastácio, P. M. S. G., Araujo, P. B., Souty-Grosset, C., & Almerão, M. P. (2015). Red swamp crayfish: Biology, ecology and invasion-An overview. Nauplius, 23(1), 1-19. https://doi.org/10.1590/s0104-64972014002214

Lustenhouwer, N., & Parker, I. M. (2022). Beyond tracking climate: Niche shifts during native range expansion and their implications for novel invasions. Journal of Biogeography, 1481-1493, 1481-1493. https://doi.org/10.1111/jbi.14395

Madzivanzira, T. C., South, J., Wood, L. E., Nunes, A. L., & Weyl, O. L. F. (2020). A review of freshwater crayfish introductions in Africa. Reviews in Fisheries Science and Aquaculture, 29(2), 218-241. https://doi.org/10.1080/23308249.2020.1802405

Manenti, R., Falaschi, M., Monache, D. D., Marta, S., & Ficetola, G. F. (2020). Network-scale effects of invasive species on spatially-structured amphibian populations. Ecography, 43(1), 119-127. https://doi.org/10.1111/ecog.04571

Mathers, K. L., White, J. C., Guareschi, S., Hill, M. J., Heino, J., & Chadd, R. (2020). Invasive crayfish alter the long-term functional biodiversity of lotic macroinvertebrate communities. Functional Ecology, 34, 2350-2361. https://doi.org/10.1111/1365-2435.13644

Mormul, R. P., Vieira, D. S., Bailly, D., Fidanza, K., da Silva, V. F. B., da Graça, W. J., Pontara, V., Bueno, M. L., Thomaz, S. M., & Mendes, R. S. (2022). Invasive alien species records are exponentially rising across the earth. Biological Invasions, 24, 3249-3261. https://doi.org/10.1007/s10530-022-02843-1

Oficialdegui, F. J., Clavero, M., Sánchez, M. I., Green, A. J., Boyero, L., Michot, T. C., Klose, K., Kawai, T., & Lejeusne, C. (2019). Unravelling the global invasion routes of a worldwide invader, the red swamp crayfish (Procambarus clarkii). Freshwater Biology, 64(8), 1382-1400. https://doi.org/10.1111/fwb.13312

Oficialdegui, F. J., Sánchez, M. I., & Clavero, M. (2020). One century away from home: How the red swamp crayfish took over the world. Reviews in Fish Biology and Fisheries, 30(1), 121-135. https://doi.org/10.1007/s11160-020-09594-z

Polidori, C., García-Gila, J., Blasco-Aróstegui, J., & Gil-Tapetado, D. (2021). Urban areas are favouring the spread of an alien mud-dauber wasp into climatically non-optimal latitudes. Acta Oecologica, 110, 103678. https://doi.org/10.1016/j.actao.2020.103678

Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., Dawson, W., Essl, F., Foxcroft, L. C., Genovesi, P., Jeschke, J. M., Kühn, I., Liebhold, A. M., Mandrak, N. E., Meyerson, L. A., Pauchard, A., Pergl, J., Roy, H. E., Seebens, H., … Richardson, D. M. (2020). Scientists' warning on invasive alien species. Biological Reviews, 95, 1511-1534. https://doi.org/10.1111/brv.12627

QGIS.org. (2022). QGIS geographic information system. QGIS Association. http://www.qgis.org

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org

Santamarina, S., Mateo, R. G., Alfaro-saiz, E., & Acedo, C. (2023). On the importance of invasive species niche dynamics in plant conservation management at large and local scale. Frontiers in Ecology and Evolution, 10, 1049142. https://doi.org/10.3389/fevo.2022.1049142

Sato, D. X., Matsuda, Y., Usio, N., Funayama, R., Nakayama, K., & Makino, T. (2023). Genomic adaptive potential to cold environments in the invasive red swamp crayfish. iScience, 26(8), 107267.

Sherpa, S., Kebaïli, C., Rioux, D., Guéguen, M., Renaud, J., & Després, L. (2022). Population decline at distribution margins: Assessing extinction risk in the last glacial relictual but still functional metapopulation of a European butterfly. Diversity and Distributions, 28(2), 271-290. https://doi.org/10.1111/ddi.13460

Simberloff, D. (2021). Maintenance management and eradication of established aquatic invaders. Hydrobiologia, 848, 2399-2420. https://doi.org/10.1007/s10750-020-04352-5

Souty-Grosset, C., Anastácio, P. M., Aquiloni, L., Banha, F., Choquer, J., Chucholl, C., & Tricarico, E. (2016). The red swamp crayfish Procambarus clarkii in Europe: Impacts on aquatic ecosystems and human well-being. Limnologica, 58, 78-93. https://doi.org/10.1016/j.limno.2016.03.003

Thuiller, W., Georges, D., Gueguen, M., Engler, R., Breiner, F., Lafourcade, B., & Patin, R. (2022). biomod2: Ensemble platform for species distribution modeling. R Package Version 4.1-2. https://CRAN.R-project.org/package=biomod2

Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD-A platform for ensemble forecasting of species distributions. Ecography, 32, 369-373.

Tingley, M. W., & Beissinger, S. R. (2009). Detecting range shifts from historical species occurrences: New perspectives on old data. Trends in Ecology and Evolution, 24(11), 625-633. https://doi.org/10.1016/j.tree.2009.05.009

Title, P. O., & Bemmels, J. B. (2018). ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 41(2), 291-307. https://doi.org/10.1111/ecog.02880

Václavík, T., & Meentemeyer, R. K. (2012). Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distributions, 18(1), 73-83.

Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868-2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x.

Watanabe, R., & Ohba, S. (2022). Comparison of the community composition of aquatic insects between wetlands with and without the presence of Procambarus clarkii: A case study from Japanese wetlands. Biological Invasions, 24(4), 1033-1047. https://doi.org/10.1007/s10530-021-02700-7

Zhang, Z., Capinha, C., Usio, N., Weterings, R., Liu, X., Li, Y., Landeria, J. M., Zhou, Q., & Yokota, M. (2020). Impacts of climate change on the global potential distribution of two notorious invasive crayfishes. Freshwater Biology, 65(3), 353-365. https://doi.org/10.1111/fwb.13429

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...