The Transmembrane Adaptor Protein SCIMP Facilitates Sustained Dectin-1 Signaling in Dendritic Cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
27288407
PubMed Central
PMC4974369
DOI
10.1074/jbc.m116.717157
PII: S0021-9258(20)35377-1
Knihovny.cz E-zdroje
- Klíčová slova
- Dectin-1, ERK, SCIMP, dendritic cell, innate immunity, p38, pattern recognition receptor (PRR), phosphotyrosine signaling, signal transduction,
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- B-lymfocyty metabolismus MeSH
- buněčné linie MeSH
- dendritické buňky metabolismus MeSH
- fosfolipasa C gama genetika metabolismus MeSH
- lektiny typu C genetika metabolismus MeSH
- MAP kinasový signální systém fyziologie MeSH
- mutantní kmeny myší MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- dectin 1 MeSH Prohlížeč
- fosfolipasa C gama MeSH
- lektiny typu C MeSH
- Plcg1 protein, mouse MeSH Prohlížeč
Transmembrane adaptor proteins are molecules specialized in recruiting cytoplasmic proteins to the proximity of the cell membrane as part of the signal transduction process. A member of this family, SLP65/SLP76, Csk-interacting membrane protein (SCIMP), recruits a complex of SLP65/SLP76 and Grb2 adaptor proteins, known to be involved in the activation of PLCγ1/2, Ras, and other pathways. SCIMP expression is restricted to antigen-presenting cells. In a previous cell line-based study, it was shown that, in B cells, SCIMP contributes to the reverse signaling in the immunological synapse, downstream of MHCII glycoproteins. There it mainly facilitates the activation of ERK MAP kinases. However, its importance for MHCII glycoprotein-dependent ERK signaling in primary B cells has not been analyzed. Moreover, its role in macrophages and dendritic cells has remained largely unknown. Here we present the results of our analysis of SCIMP-deficient mice. In these mice, we did not observe any defects in B cell signaling and B cell-dependent responses. On the other hand, we found that, in dendritic cells and macrophages, SCIMP expression is up-regulated after exposure to GM-CSF or the Dectin-1 agonist zymosan. Moreover, we found that SCIMP is strongly phosphorylated after Dectin-1 stimulation and that it participates in signal transduction downstream of this important pattern recognition receptor. Our analysis of SCIMP-deficient dendritic cells revealed that SCIMP specifically contributes to sustaining long-term MAP kinase signaling and cytokine production downstream of Dectin-1 because of an increased expression and sustained phosphorylation lasting at least 24 h after signal initiation.
Zobrazit více v PubMed
Hardison S. E., and Brown G. D. (2012) C-type lectin receptors orchestrate antifungal immunity. Nat. Immunol. 13, 817–822 PubMed PMC
Seo B. S., Lee S. H., Lee J. E., Yoo Y. C., Lee J., and Park S. R. (2013) Dectin-1 stimulation selectively reinforces LPS-driven IgG1 production by mouse B cells. Immune Netw. 13, 205–212 PubMed PMC
Taylor P. R., Brown G. D., Reid D. M., Willment J. A., Martinez-Pomares L., Gordon S., and Wong S. Y. (2002) The β-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 169, 3876–3882 PubMed
Willment J. A., Marshall A. S., Reid D. M., Williams D. L., Wong S. Y., Gordon S., and Brown G. D. (2005) The human β-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur. J. Immunol. 35, 1539–1547 PubMed
Brown G. D., and Gordon S. (2001) Immune recognition: a new receptor for β-glucans. Nature 413, 36–37 PubMed
Barreto-Bergter E., and Figueiredo R. T. (2014) Fungal glycans and the innate immune recognition. Front. Cell. Infect. Microbiol. 4, 145. PubMed PMC
Brown G. D., Herre J., Williams D. L., Willment J. A., Marshall A. S., and Gordon S. (2003) Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med. 197, 1119–1124 PubMed PMC
Brown G. D., Taylor P. R., Reid D. M., Willment J. A., Williams D. L., Martinez-Pomares L., Wong S. Y., and Gordon S. (2002) Dectin-1 is a major β-glucan receptor on macrophages. J. Exp. Med. 196, 407–412 PubMed PMC
Saijo S., Fujikado N., Furuta T., Chung S. H., Kotaki H., Seki K., Sudo K., Akira S., Adachi Y., Ohno N., Kinjo T., Nakamura K., Kawakami K., and Iwakura Y. (2007) Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat. Immunol. 8, 39–46 PubMed
Marakalala M. J., Vautier S., Potrykus J., Walker L. A., Shepardson K. M., Hopke A., Mora-Montes H. M., Kerrigan A., Netea M. G., Murray G. I., Maccallum D. M., Wheeler R., Munro C. A., Gow N. A., Cramer R. A., et al. (2013) Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLoS Pathog. 9, e1003315. PubMed PMC
Steele C., Rapaka R. R., Metz A., Pop S. M., Williams D. L., Gordon S., Kolls J. K., and Brown G. D. (2005) The β-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog. 1, e42. PubMed PMC
Ferwerda B., Ferwerda G., Plantinga T. S., Willment J. A., van Spriel A. B., Venselaar H., Elbers C. C., Johnson M. D., Cambi A., Huysamen C., Jacobs L., Jansen T., Verheijen K., Masthoff L., Morré S. A., et al. (2009) Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361, 1760–1767 PubMed PMC
Plantinga T. S., van der Velden W. J., Ferwerda B., van Spriel A. B., Adema G., Feuth T., Donnelly J. P., Brown G. D., Kullberg B. J., Blijlevens N. M., and Netea M. G. (2009) Early stop polymorphism in human DECTIN-1 is associated with increased Candida colonization in hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 49, 724–732 PubMed
Sancho D., and Reis e Sousa C. (2012) Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu. Rev. Immunol. 30, 491–529 PubMed PMC
Brubaker S. W., Bonham K. S., Zanoni I., and Kagan J. C. (2015) Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 PubMed PMC
Dambuza I. M., and Brown G. D. (2015) C-type lectins in immunity: recent developments. Curr. Opin. Immunol. 32, 21–27 PubMed PMC
Gantner B. N., Simmons R. M., Canavera S. J., Akira S., and Underhill D. M. (2003) Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 197, 1107–1117 PubMed PMC
Rogers N. C., Slack E. C., Edwards A. D., Nolte M. A., Schulz O., Schweighoffer E., Williams D. L., Gordon S., Tybulewicz V. L., Brown G. D., and Reis e Sousa C. (2005) Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507–517 PubMed
Goodridge H. S., Reyes C. N., Becker C. A., Katsumoto T. R., Ma J., Wolf A. J., Bose N., Chan A. S., Magee A. S., Danielson M. E., Weiss A., Vasilakos J. P., and Underhill D. M. (2011) Activation of the innate immune receptor Dectin-1 upon formation of a “phagocytic synapse.” Nature 472, 471–475 PubMed PMC
Willment J. A., Lin H. H., Reid D. M., Taylor P. R., Williams D. L., Wong S. Y., Gordon S., and Brown G. D. (2003) Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide. J. Immunol. 171, 4569–4573 PubMed
Mantegazza A. R., Barrio M. M., Moutel S., Bover L., Weck M., Brossart P., Teillaud J.-L., and Mordoh J. (2004) CD63 tetraspanin slows down cell migration and translocates to the endosomal-lysosomal-MIICs route after extracellular stimuli in human immature dendritic cells. Blood 104, 1183–1190 PubMed
Meyer-Wentrup F., Figdor C. G., Ansems M., Brossart P., Wright M. D., Adema G. J., and van Spriel A. B. (2007) Dectin-1 interaction with tetraspanin CD37 inhibits IL-6 production. J. Immunol. 178, 154–162 PubMed
Berditchevski F., and Odintsova E. (2007) Tetraspanins as regulators of protein trafficking. Traffic 8, 89–96 PubMed
Draber P., Vonkova I., Stepanek O., Hrdinka M., Kucova M., Skopcova T., Otahal P., Angelisova P., Horejsi V., Yeung M., Weiss A., and Brdicka T. (2011) SCIMP, a transmembrane adaptor protein involved in major histocompatibility complex class II signaling. Mol. Cell. Biol. 31, 4550–4562 PubMed PMC
Stepanek O., Draber P., and Horejsi V. (2014) Palmitoylated transmembrane adaptor proteins in leukocyte signaling. Cell. Signal. 26, 895–902 PubMed
Di Carlo F. J., and Fiore J. V. (1958) On the composition of zymosan. Science 127, 756–757 PubMed
Underhill D. M., Ozinsky A., Hajjar A. M., Stevens A., Wilson C. B., Bassetti M., and Aderem A. (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 PubMed
Takeuchi O., Kaufmann A., Grote K., Kawai T., Hoshino K., Morr M., Mühlradt P. F., and Akira S. (2000) Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 164, 554–557 PubMed
Akira S. (2000) Toll-like receptors: lessons from knockout mice. Biochem. Soc. Trans. 28, 551–556 PubMed
Jia X. M., Tang B., Zhu L. L., Liu Y. H., Zhao X. Q., Gorjestani S., Hsu Y. M., Yang L., Guan J. H., Xu G. T., and Lin X. (2014) CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J. Exp. Med. 211, 2307–2321 PubMed PMC
André P., Cambier J. C., Wade T. K., Raetz T., and Wade W. F. (1994) Distinct structural compartmentalization of the signal transducing functions of major histocompatibility complex class II (Ia) molecules. J. Exp. Med. 179, 763–768 PubMed PMC
McGreal E. P., Rosas M., Brown G. D., Zamze S., Wong S. Y., Gordon S., Martinez-Pomares L., and Taylor P. R. (2006) The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 16, 422–430 PubMed
Xu S., Huo J., Lee K.-G., Kurosaki T., and Lam K.-P. (2009) Phospholipase Cγ2 is critical for Dectin-1-mediated Ca2+ flux and cytokine production in dendritic cells. J. Biol. Chem. 284, 7038–7046 PubMed PMC
Koretzky G. A., Abtahian F., and Silverman M. A. (2006) SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond. Nat. Rev. Immunol. 6, 67–78 PubMed
Jun J. E., Rubio I., and Roose J. P. (2013) Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front. Immunol. 4, 239. PubMed PMC
Slack E. C., Robinson M. J., Hernanz-Falcón P., Brown G. D., Williams D. L., Schweighoffer E., Tybulewicz V. L., and Reis e Sousa C. (2007) Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur. J. Immunol. 37, 1600–1612 PubMed
Zhu W., Downey J. S., Gu J., Di Padova F., Gram H., and Han J. (2000) Regulation of TNF expression by multiple mitogen-activated protein kinase pathways. J. Immunol. 164, 6349–6358 PubMed
Wu Y.-J., Wu Y.-H., Mo S.-T., Hsiao H.-W., He Y.-W., and Lai M.-Z. (2015) Cellular FLIP inhibits myeloid cell activation by suppressing selective innate signaling. J. Immunol. 195, 2612–2623 PubMed
Cenci E., Mencacci A., Casagrande A., Mosci P., Bistoni F., and Romani L. (2001) Impaired antifungal effector activity but not inflammatory cell recruitment in interleukin-6-deficient mice with invasive pulmonary aspergillosis. J. Infect. Dis. 184, 610–617 PubMed
Romani L., Mencacci A., Cenci E., Spaccapelo R., Toniatti C., Puccetti P., Bistoni F., and Poli V. (1996) Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected with Candida albicans. J. Exp. Med. 183, 1345–1355 PubMed PMC
van Enckevort F. H., Netea M. G., Hermus A. R., Sweep C. G., Meis J. F., Van der Meer J. W., and Kullberg B. J. (1999) Increased susceptibility to systemic candidiasis in interleukin-6 deficient mice. Med. Mycol. 37, 419–426 PubMed
Filler S. G., Yeaman M. R., and Sheppard D. C. (2005) Tumor necrosis factor inhibition and invasive fungal infections. Clin. Infect. Dis. 41, S208–S212 PubMed
Vallabhaneni S., and Chiller T. M. (2016) Fungal infections and new biologic therapies. Curr. Rheumatol. Rep. 18, 29. PubMed
Sonoda E., Pewzner-Jung Y., Schwers S., Taki S., Jung S., Eilat D., and Rajewsky K. (1997) B cell development under the condition of allelic inclusion. Immunity 6, 225–233 PubMed
Hou B., Reizis B., and DeFranco A. L. (2008) Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity 29, 272–282 PubMed PMC
Edwards A. D., Diebold S. S., Slack E. M., Tomizawa H., Hemmi H., Kaisho T., Akira S., and Reis e Sousa C. (2003) Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 α+ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 33, 827–833 PubMed
Chatterjee P., Tiwari R. K., Rath S., Bal V., and George A. (2012) Modulation of antigen presentation and B cell receptor signaling in B cells of beige mice. J. Immunol. 188, 2695–2702 PubMed