Using stable isotopes to analyse extinction risks and reintroduction opportunities of native species in invaded ecosystems
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33303830
PubMed Central
PMC7728764
DOI
10.1038/s41598-020-78328-9
PII: 10.1038/s41598-020-78328-9
Knihovny.cz E-zdroje
- MeSH
- Anguilla * MeSH
- biodiverzita * MeSH
- Cyprinidae * MeSH
- ekosystém * MeSH
- extinkce biologická * MeSH
- izotopy * MeSH
- zachování přírodních zdrojů metody MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Španělsko MeSH
- Názvy látek
- izotopy * MeSH
Invasive non-native species have pervasive impacts on native biodiversity, including population extirpations and species extinctions. Identifying reasons why a population of a native species is extirpated following an invasion often relies on literature-based results of anecdotal observations. The well-established schemes of existing risk assessments for invasive species assume that a species' information (e.g. impacts or behavioural and biological traits) can be projected from one area to another to estimate the potential impact of a species in another environment. We used stable isotope data (δ13C, δ15N) from both invaded and uninvaded communities to predict such invasion impacts by reconstructing trophic relationships. This approach was tested on a community within a protected lake in Northern Spain where, following the introductions of non-native species, the last resident native species (the common tench Tinca tinca, the European eel Anguilla anguilla, and the whirligig beetle Gyrinus sp.) had been extirpated. Through the application of this novel approach, we found evidence that native species' declines were related to direct predation by and resource overlap with non-native species, which occurred in conjunction with habitat modification. Using this approach, we outlined the mechanisms involved in the extirpation of native species in the post-invasion period. To compensate for losses of native species induced by invasions of non-native species, native species reintroductions might be an appropriate tool. For this, we further suggested and discussed a novel approach that predicts the outcome of arising interactions by superimposing stable isotope data from alternative sources to better estimate the success of native species´ reintroductions.
Department of Biology University of Florence Via Madonna del Piano 6 50019 Florence Italy
Faculty of Biology University of Duisburg Essen 45141 Essen Germany
Zobrazit více v PubMed
Lovell SJ, Stone SF, Fernandez L. The economic impacts of aquatic invasive species: a review of the literature. Agric. Resour. Econ. Rev. 2006;35(1):195–208. doi: 10.1017/S1068280500010157. DOI
Ehrenfeld JG. Ecosystem consequences of biological invasions. Ann. Rev. Ecol. Evol. Syst. 2010;41:59–80. doi: 10.1146/annurev-ecolsys-102209-144650. DOI
Dunham JB, Adams SB, Schroeter RE, Novinger DC. Non-native invasions in aquatic ecosystems: toward an understanding of brook trout invasions and potential impacts on inland cutthroat trout in western North America. Rev. Fish Biol. Fish. 2002;12(4):373–391. doi: 10.1023/A:1025338203702. DOI
Balzani P, Vizzini S, Santini G, Masoni A, Ciofi C, Ricevuto E, Chelazzi G. Stable isotope analysis of trophic niche in two co-occurring native and invasive terrapins, Emys orbicularis and Trachemys scripta elegans. Biol. Invasions. 2016;18(12):3611–3621. doi: 10.1007/s10530-016-1251-x. DOI
Haubrock PJ, Criado A, Monteoliva AP, Monteoliva JA, Santiago T, Inghilesi AF, Tricarico E. Control and eradication efforts of aquatic non-native fish species in Lake Caicedo Yuso-Arreo. Manag. Biol. Invasions. 2018;9:267–278. doi: 10.3391/mbi.2018.9.3.09. DOI
Preston DL, Henderson JS, Johnson PT. Community ecology of invasions: direct and indirect effects of multiple invasive species on aquatic communities. Ecology. 2012;93(6):1254–1261. doi: 10.1890/11-1821.1. PubMed DOI
Gallardo B, Clavero M, Sánchez MI, Vilà M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 2016;22(1):151–163. doi: 10.1111/gcb.13004. PubMed DOI
Pejchar L, Mooney HA. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 2009;24(9):497–504. doi: 10.1016/j.tree.2009.03.016. PubMed DOI
Simberloff D, Von Holle B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Invasions. 1999;1(1):21–32. doi: 10.1023/A:1010086329619. DOI
Beisel, J. N. The elusive model of a biological invasion process: time to take differences among aquatic and terrestrial ecosystems into account? (2001).
Ricciardi A, Cohen J. The invasiveness of an introduced species does not predict its impact. Biol. Invasions. 2007;9(3):309–315. doi: 10.1007/s10530-006-9034-4. DOI
Strayer DL. Non-native species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 2010;55:152–174. doi: 10.1111/j.1365-2427.2009.02380.x. DOI
Früh D, Stoll S, Haase P. Physicochemical and morphological degradation of stream and river habitats increases invasion risk. Biol. Invasions. 2012;14(11):2243–2253. doi: 10.1007/s10530-012-0226-9. DOI
Höckendorff S, Früh D, Hormel N, Haase P, Stoll S. Biotic interactions under climate warming: temperature-dependent and species-specific effects of the oligochaete Chaetogaster limnaei on snails. Freshw. Sci. 2015;34:1304–1311. doi: 10.1086/683606. DOI
Leung B, Mandrak NE. The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure. Proc. R. Soc. B Biol. Sci. 2007;274(1625):2603–2609. doi: 10.1098/rspb.2007.0841. PubMed DOI PMC
Copp GH, Garthwaite R, Gozlan RE. Risk identification and assessment of non-native freshwater fishes: a summary of concepts and perspectives on protocols for the UK. J. Appl. Ichthyol. 2005;21(4):371–373. doi: 10.1111/j.1439-0426.2005.00692.x. DOI
Copp GH, Russell IC, Peeler EJ, Gherardi F, Tricarico E, Macleod A, Mumford J. European non-native species in aquaculture risk analysis scheme—a summary of assessment protocols and decision support tools for use of non-native species in aquaculture. Fish. Manag. Ecol. 2016;23(1):1–11. doi: 10.1111/fme.12074. DOI
Bacher S, Blackburn TM, Essl F, Genovesi P, Heikkilä J, Jeschke JM, Martinou AF. Socio-economic impact classification of non-native taxa (SEICAT) Methods Ecol. Evol. 2018;9(1):159–168. doi: 10.1111/2041-210X.12844. DOI
Roy HE, Rabitsch W, Scalera R, Stewart A, Gallardo B, Genovesi P, Branquart E. Developing a framework of minimum standards for the risk assessment of non-native species. J. Appl. Ecol. 2018;55(2):526–538. doi: 10.1111/1365-2664.13025. DOI
Moustakas A, Katsanevakis S. Data mining and methods for early detection, horizon scanning, modelling, and risk assessment of invasive species. Front. Appl. Math. Stat. 2018;4:5. doi: 10.3389/fams.2018.00005. DOI
Dick JT, Laverty C, Lennon JJ, Barrios-O'Neill D, Mensink PJ, Britton JR, Dunn AM. Invader relative impact potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive non-native species. J. Appl. Ecol. 2017;54(4):1259–1267. doi: 10.1111/1365-2664.12849. DOI
Cuthbert, R. N., Dickey, J. W., Coughlan, N. E., Joyce, P. W. & Dick, J. T. The functional response ratio (FRR): advancing comparative metrics for predicting the ecological impacts of invasive non-native species. Biol. Invasions 1–5 (2019).
Haubrock PJ, Cuthbert RN, Veselý L, Balzani P, Baker NJ, Dick JT, Kouba A. Predatory functional responses under increasing temperatures of two life stages of an invasive gecko. Sci. Rep. 2020;10(1):1–10. doi: 10.1038/s41598-020-67194-0. PubMed DOI PMC
Vonesh J, McCoy M, Altwegg R, Landi P, Measey J. Functional responses can’t unify invasion ecology. Biol. Invasions. 2017;19(5):1673–1676. doi: 10.1007/s10530-016-1356-2. DOI
Dick JT, Alexander ME, Ricciardi A, Laverty C, Downey PO, Xu M, Jeschke JM, Saul WC, Hill MP, Wasserman R, Barrios-ONeill D. Fictional responses from Vonesh et al. Biol. Invasions. 2017;19(5):1677–1678. doi: 10.1007/s10530-016-1360-6. DOI
Vander Zanden MJ, Casselman JM, Rasmussen JB. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature. 1999;401(6752):464. doi: 10.1038/46762. DOI
Haubrock PJ, Balzani P, Azzini M, Inghilesi AF, Veselý L, Guo W, Tricarico E. Shared histories of co-evolution may affect trophic interactions in a freshwater community dominated by non-native species. Front. Ecol. Evol. 2019;7:355. doi: 10.3389/fevo.2019.00355. DOI
Stellati L, Borgianni N, Bissattini AM, Buono V, Haubrock PJ, Balzani P, Luiselli L. Living with non-natives: suboptimal ecological condition in semiaquatic snakes inhabiting a hot spot of allodiversity. Acta Oecol. 2019;100:103466. doi: 10.1016/j.actao.2019.103466. DOI
Huckembeck S, Loebmann D, Albertoni EF, Hefler SM, Oliveira MC, Garcia AM. Feeding ecology and basal food sources that sustain the Paradoxal frog Pseudis minuta: a multiple approach combining stomach content, prey availability, and stable isotopes. Hydrobiologia. 2014;740(1):253–264. doi: 10.1007/s10750-014-2022-2. DOI
Middelburg JJ. Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences. 2014;11:2357–2371. doi: 10.5194/bg-11-2357-2014. DOI
Jackson AL, Inger R, Parnell AC, Bearhop S. Comparing isotopic niche widths among and within communities: SIBER–stable isotope bayesian ellipses in R. J. Anim. Ecol. 2011;80(3):595–602. doi: 10.1111/j.1365-2656.2011.01806.x. PubMed DOI
Parnell AC, Phillips DL, Bearhop S, Semmens BX, Ward EJ, Moore JW, Inger R. Bayesian stable isotope mixing models. Environmetrics. 2013;24(6):387–399.
Haubrock PJ, Balzani P, Criado A, Inghilesi AF, Tricarico E, Monteoliva AP. Predicting the effects of reintroducing a native predator (European eel, Anguilla anguilla) into a freshwater community dominated by non-native species using a multidisciplinary approach. Manag. Biol. Invasions. 2019;10(1):171–191. doi: 10.3391/mbi.2019.10.1.11. DOI
Post DM. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology. 2002;83(3):703–718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2. DOI
Füreder, L., Gherardi, F., Holdich, D., Reynolds, J., Sibley, P. & Souty-Grosset, C. Austropotamobius pallipes. The IUCN Red List of Threatened Species. e.T2430A9438817. 10.2305/IUCN.UK.2010-3.RLTS.T2430A9438817.en. (2010).
Pike, C., Crook, V. & Gollock, M. Anguilla anguilla. The IUCN Red List of Threatened Species e.T60344A152845178. 10.2305/IUCN.UK.2020-2.RLTS.T60344A152845178.en. (2020).
González-Mozo ME, Chicote A, Rico E, Montes C. Limnological characterization of an evaporite karstic lake in Spain (Arreo Lake) Trends Ecol. Evol. 2004;19(9):470–474. doi: 10.1016/j.tree.2004.07.005. PubMed DOI
Asensio, R. Actuaciones de descaste de cangrejos alóctonos en el lago de Caicedo Yuso - Arreo para los años 2014 y 2015. PROYECTO TREMEDAL “LIFE11 NAT/ES/707”. URA/Arabako Foru Aldundia/HAZI. (2015).
Alonso de Santocildes, G., Criado, A., Manzanos, A. & A.P. Monteoliva. Fish sampling in inland lakes: methodological approach and case study, Arreo Lake (Álava). IV Jornadas Ibéricas de Ictiología (2012).
Losos JB. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 2008;11(10):995–1003. doi: 10.1111/j.1461-0248.2008.01229.x. PubMed DOI
Pauli JN, Steffan SA, Newsome SD. It is time for IsoBank. BioScience. 2015;65(3):229–230. doi: 10.1093/biosci/biu230. DOI
Pauli JN, Newsome SD, Cook JA, Harrod C, Steffan SA, Baker CJ, Cicero C. Opinion: Why we need a centralized repository for isotopic data. Proc. Natl. Acad. Sci. 2017;114(12):2997–3001. doi: 10.1073/pnas.1701742114. PubMed DOI PMC
Gratwicke B, Marshall BE. The relationship between the exotic predators Micropterus salmoides and Serranochromis robustus and native stream fishes in Zimbabwe. J. Fish Biol. 2001;58(1):68–75. doi: 10.1111/j.1095-8649.2001.tb00499.x. DOI
Maezono Y, Miyashita T. Community-level impacts induced by introduced largemouth bass and bluegill in farm ponds in Japan. Biol. Conserv. 2003;109(1):111–121. doi: 10.1016/S0006-3207(02)00144-1. DOI
Yonekura R, Kita M, Yuma M. Species diversity in native fish community in Japan: comparison between non-invaded and invaded ponds by exotic fish. Ichthyol. Res. 2004;51(2):176–179. doi: 10.1007/s10228-003-0200-8. DOI
Maezono Y, Kobayashi R, Kusahara M, Miyashita T. Direct and indirect effects of exotic bass and bluegill on exotic and native organisms in farm ponds. Ecol. Appl. 2005;15(2):638–650. doi: 10.1890/02-5386. DOI
Almeida, D., Gomes-Lopes, A., Muñoz-López, M., Merino-Aquirre, R. & Miranda, R. Ecología de la agresión interespecífica en el pez sol Lepomis gibbosus y efectos sobre la fauna autóctona. In Posters from the Symposium on non-native freshwater species introduction in the Iberian Peninsula, Pamplona, Spain. http://www.unav.es/centro/especiesinvasoras/ (2009).
Froese, R., & Pauly, D. (2010). www.FishBase.de. Accessed November 19th, 2019.
Oficialdegui, F. J., Sánchez, M. I. & Clavero, M. One century away from home: how the red swamp crayfish took over the world. Rev. Fish Biol. Fish. 1–15 (2020).
Fletcher AR, Morison AK, Hume DJ. Effects of carp, Cyprinus carpio L., on communities of aquatic vegetation and turbidity of waterbodies in the lower Goulburn River basin. Mar. Freshw. Res. 1985;36(3):311–327. doi: 10.1071/MF9850311. DOI
Pompei, L., Franchi, E., Giannetto, D. & Lorenzoni, M. Growth and reproductive properties of Tench, Tinca tinca Linnaeus, 1758 in Trasimeno Lake (Umbria, Italy). Knowl. Manag. Aquat. Ecosyst. 406 (2012).
Angeler DG, Sánchez-Carrillo S, García G, Alvarez-Cobelas M. The influence of Procambarus clarkii (Cambaridae, Decapoda) on water quality and sediment characteristics in a Spanish floodplain wetland. Hydrobiologia. 2001;464(1–3):89–98. doi: 10.1023/A:1013950129616. DOI
Jastrebski CJ, Robinson BW. Natural selection and the evolution of replicated trophic polymorphisms in pumpkinseed sunfish (Lepomis gibbosus) Evol. Ecol. Res. 2004;6(2):285–305.
Gherardi F, Barbaresi S. Feeding opportunism of the red swamp crayfish Procambarus clarkii, an invasive species. Freshw. Crayfish. 2008;16:77–85. PubMed
Wolfram-Wais A, Wolfram G, Auer B, Mikschi E, Hain A. Feeding habits of two introduced fish species (Lepomis gibbosus, Pseudorasbora parva) in Neusiedler See (Austria), with special reference to chironomid larvae (Diptera: Chironomidae) Shallow Lakes. 1999;98:123–129. doi: 10.1007/978-94-017-2986-4_12. DOI
Fell PE, Weissbach SP, Jones DA, Fallon MA, Zeppieri JA, Faison EK, Reddington LK. Does invasion of oligohaline tidal marshes by reed grass, Phragmites australis (Cav.) Trin. ex Steud., affect the availability of prey resources for the mummichog, Fundulus heteroclitus L.? J. Exper. Mar. Biol. Ecol. 1998;222(1–2):59–77. doi: 10.1016/S0022-0981(97)00138-X. DOI
Bedford AP, Powell I. Long-term changes in the invertebrates associated with the litter of Phragmites australis in a managed reedbed. Hydrobiologia. 2005;549(1):267–285. doi: 10.1007/s10750-005-5439-9. DOI
Chambers RM, Meyerson LA, Saltonstall K. Expansion of Phragmites australis into tidal wetlands of North America. Aquat. Bot. 1999;64(3–4):261–273. doi: 10.1016/S0304-3770(99)00055-8. DOI
Gratton C, Denno RF. Restoration of arthropod assemblages in a Spartina salt marsh following removal of the invasive plant Phragmites australis. Restoration Ecology. 2005;13(2):358–372. doi: 10.1111/j.1526-100X.2005.00045.x. DOI
Gherardi F, Britton JR, Mavuti KM, Pacini N, Grey J, Tricarico E, Harper DM. A review of allodiversity in Lake Naivasha, Kenya: developing conservation actions to protect East African lakes from the negative impacts of non-native species. Biol. Conserv. 2011;144(11):2585–2596. doi: 10.1016/j.biocon.2011.07.020. DOI
Stiers I, Crohain N, Josens G, Triest L. Impact of three aquatic invasive species on native plants and macroinvertebrates in temperate ponds. Biol. Invasions. 2011;13(12):2715–2726. doi: 10.1007/s10530-011-9942-9. DOI
Barbaresi S, Tricarico E, Gherardi F. Factors inducing the intense burrowing activity of the red-swamp crayfish, Procambarus clarkii, an invasive species. Naturwissenschaften. 2004;91(7):342–345. doi: 10.1007/s00114-004-0533-9. PubMed DOI
Britton JR, Boar RR, Grey J, Foster J, Lugonzo J, Harper DM. From introduction to fishery dominance: the initial impacts of the invasive carp Cyprinus carpio in Lake Naivasha, Kenya, 1999 to 2006. J. Fish Biol. 2007;71:239–257. doi: 10.1111/j.1095-8649.2007.01669.x. DOI
Anton-Pardo M, Hlaváč D, Másílko J, Hartman P, Adámek Z. Natural diet of mirror andscaly carp (Cyprinus carpio) phenotypes in earth ponds. Folia Zool. 2014;63:229–237. doi: 10.25225/fozo.v63.i4.a1.2014. DOI
Hauser CE, McCarthy MA. Streamlining ‘search and destroy’: cost-effective surveillance for invasive species management. Ecol. Lett. 2009;12(7):683–692. doi: 10.1111/j.1461-0248.2009.01323.x. PubMed DOI
Rinella MJ, Maxwell BD, Fay PK, Weaver T, Sheley RL. Control effort exacerbates invasive-species problem. Ecol. Appl. 2009;19(1):155–162. doi: 10.1890/07-1482.1. PubMed DOI
Jourdan J, Plath M, Tonkin JD, Ceylan M, Dumeier AC, Gellert G, Graf W, Hawkins CP, Kiel E, Lorenz AW, Matthaei CD. Reintroduction of freshwater macroinvertebrates: challenges and opportunities. Biol. Rev. 2019;94(2):368–387. doi: 10.1111/brv.12458. PubMed DOI
Haase P, Pilotto F. A method for the reintroduction of entire benthic invertebrate communities in formerly degraded streams. Limnologica. 2019;77:125689. doi: 10.1016/j.limno.2019.125689. DOI
Feunteun E. Management and restoration of European eel population (Anguilla anguilla): an impossible bargain. Ecol. Eng. 2002;18(5):575–591. doi: 10.1016/S0925-8574(02)00021-6. DOI
Clavero M, Hermoso V. Historical data to plan the recovery of the European eel. J. Appl. Ecol. 2015;52(4):960–968. doi: 10.1111/1365-2664.12446. DOI
Benndorf J. Possibilities and limits for controlling eutrophication by biomanipulation. Int. Rev. Hydrobiol. 1995;80:519–534. doi: 10.1002/iroh.19950800404. DOI
Aquiloni L, Brusconi S, Cecchinelli E, Tricarico E, Mazza G, Paglianti A, Gherardi F. Biological control of invasive populations of crayfish: the European eel (Anguilla anguilla) as a predator of Procambarus clarkii. Biol. Invasions. 2010;12:3817–3824. doi: 10.1007/s10530-010-9774-z. DOI
McCord JW American eel. South Carolina State Documents Depository (2005)
Schiphouwer ME, Felix RPWH, Van Duinen GA, De Hoop L, De Hullu PC, Matthews J, Leuven RSEW. Risk assessment of the alien smallmouth bass (Micropterusdolomieu) Rep. Environ. Sci. 2017;527:1–60.
Costantini ML, Carlino P, Calizza E, Careddu G, Cicala D, Sporta Caputi S, Rossi L. The role of alien fish (the centrarchid Micropterus salmoides) in lake food webs highlighted by stable isotope analysis. Freshw. Biol. 2018;63:1130–1142. doi: 10.1111/fwb.13122. DOI
Laffaille P, Caraguel JM, Legault A. Temporal patterns in the upstream migration of European glass eels (Anguilla anguilla) at the Couesnon estuarine dam. Estuarine Coast. Shelf Sci. 2007;73(1–2):81–90. doi: 10.1016/j.ecss.2006.12.011. DOI
Prigge, E. Factors challenging the European eel (Anguilla anguilla) stock recovery in continental waters (Doctoral dissertation, Christian-Albrechts Universität Kiel) (2013).
Catford JA, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 2009;15(1):22–40. doi: 10.1111/j.1472-4642.2008.00521.x. DOI
Marchi M, Jørgensen SE, Bécares E, Corsi I, Marchettini N, Bastianoni S. Resistance and re-organization of an ecosystem in response to biological invasion: some hypotheses. Ecol. Modell. 2011;222(16):2992–3001. doi: 10.1016/j.ecolmodel.2011.04.017. DOI
Martínez-Torres L, Gonzáles-Tapia JR, Ramóm-Luch C. Batimetría y propuesta de cartografía geológica del lago de Arreo (Diapiro de salinas de Añana, Álava) Eusko Jkaskuntza. Cuadernos de Sección. Historia. 1992;20:123–134.
Camacho, A., Borja, C., Valero-Garcés, B., Sahuquillo, M., Cirujano, S., Soria, J. M., Rico, E., De la Hera, A., Santamans, A. C., García deDomingo, A., Chicote, A. & Gosálvez, R. U. 3190 Lagos ylagunas kársticas sobre yesos. In: Ministerio de Medio Ambiente,y Medio Rural y Marino Bases ecológicas preliminares para laconservación de los tipos de hábitat de interés comunitario en España. Madrid, Spain, 37 pp (2009).
Vitoria-Gasteiz, L. Biodiversity Strategy of the Basque Autonomous Community 2030 and First Action Plan 2020; Servicio Central de Publicaciones del Gobierno Vasco (2016).
Choi WJ, Ro HM, Chang SX. Carbon isotope composition of Phragmites australis in a constructed saline wetland. Aquat. Bot. 2005;82(1):27–38. doi: 10.1016/j.aquabot.2005.02.005. DOI
Bergamino L, Dalu T, Richoux NB. Evidence of spatial and temporal changes in sources of organic matter in estuarine sediments: stable isotope and fatty acid analyses. Hydrobiologia. 2014;732(1):133–145. doi: 10.1007/s10750-014-1853-1. DOI
Kullman MA, Kidd KA, Podemski CL, Paterson MJ, Blanchfield PJ. Assimilation of freshwater salmonid aquaculture waste by native aquatic biota. Can. J. Fish. Aquat. Sci. 2009;66(11):1965–1975. doi: 10.1139/F09-128. DOI
Tonn, W. M., Klatt, P. H., Paszkowski, C. A., Gingras, B. A. & Wilcox, K. Trophic Relations of the Red-Necked Grebe on Lakes in the Western Boreal Forest: A Stable-Isotope Analysis (2004).
Jardine TD, Hadwen WL, Hamilton SK, Hladyz S, Mitrovic SM, Kidd KA, Sheldon F. Understanding and overcoming baseline isotopic variability in running waters. River Res. Appl. 2014;30(2):155–165. doi: 10.1002/rra.2630. DOI
Tran TNQ, Jackson MC, Sheath D, Verreycken H, Britton JR. Patterns of trophic niche divergence between invasive and native fishes in wild communities are predictable from mesocosm studies. J. Anim. Ecol. 2015;84(4):1071–1080. doi: 10.1111/1365-2656.12360. PubMed DOI PMC
Dörner H, Skov C, Berg S, Schulze T, Beare DJ, Van der Velde G. Piscivory and trophic position of Anguilla anguilla in two lakes: importance of macrozoobenthos density. J. Fish Biol. 2009;74(9):2115–2131. doi: 10.1111/j.1095-8649.2009.02289.x. PubMed DOI
Quezada-Romegialli C, Jackson AL, Hayden B, Kahilainen KK, Lopes C, Harrod C. tRophicPosition, an R package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods Ecol. Evol. 2018;9(6):1592–1599. doi: 10.1111/2041-210X.13009. DOI
Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Post DM. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 2012;87(3):545–562. doi: 10.1111/j.1469-185X.2011.00208.x. PubMed DOI
Layman CA, Arrington DA, Montaña CG, Post DM. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology. 2007;88(1):42–48. doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2. PubMed DOI
Swanson HK, Lysy M, Power M, Stasko AD, Johnson JD, Reist JD. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology. 2015;96(2):318–324. doi: 10.1890/14-0235.1. PubMed DOI