Predatory functional responses under increasing temperatures of two life stages of an invasive gecko

. 2020 Jun 22 ; 10 (1) : 10119. [epub] 20200622

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32572111
Odkazy

PubMed 32572111
PubMed Central PMC7308338
DOI 10.1038/s41598-020-67194-0
PII: 10.1038/s41598-020-67194-0
Knihovny.cz E-zdroje

The direct effects of temperature increases and differences among life-history might affect the impacts of native and invasive predators on recipient communities. Comparisons of functional responses can improve our understanding of underlying processes involved in altering species interaction strengths and may predict the effect of species invading new communities. Therefore, we investigated the functional responses of the mourning gecko Lepidodactylus lugubris (Duméril & Bibron, 1836) to explore how temperature, body-size and prey density alter gecko predatory impacts in ecosystems. We quantified the functional responses of juvenile and adult geckos in single-predator experiments at 20, 23 and 26 °C. Both displayed saturating Type-II functional responses, but juvenile functional responses and the novel Functional Response Ratio were positively affected by temperature as juvenile attack rates (a) increased as a function of increased temperature. Handling times (h) tended to shorten at higher temperature for both predator stages. We demonstrate that the effects of temperature on functional responses of geckos differ across ontogeny, perhaps reflecting life-history stages prioritising growth and maturation or body maintenance. This indicates that temperature-dependent gecko predatory impacts will be mediated by population demographics. We advocate further comparisons of functional responses to understand the invasiveness and future predatory impacts of geckos, and other invasive species globally, as temperatures change.

Zobrazit více v PubMed

Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS. Five potential consequences of climate change for invasive species. Cons. bio. 2008;22:534–543. doi: 10.1111/j.1523-1739.2008.00951.x. PubMed DOI

Meyerson LA, Carlton JT, Simberloff D, Lodge DM. The growing peril of biological invasions. Front Ecol Environ. 2019;17:191–191. doi: 10.1002/fee.2036. DOI

Rahel FJ, Bierwagen B, Taniguchi Y. Managing aquatic species of conservation concern in the face of climate change and invasive species. Cons Bio. 2008;22:551–561. doi: 10.1111/j.1523-1739.2008.00953.x. PubMed DOI

Mooney HA, Cleland EE. The evolutionary impact of invasive species. P Natl Acad Sci USA. 2001;98:5446–5451. doi: 10.1073/pnas.091093398. PubMed DOI PMC

Rahel, F. J. & Olden, J. D. (2008). Assessing the effects of climate change on aquatic invasive species. Cons Bio. 22, 521–533,10.1111/j.1523-1739.2008.00950.x (2001). PubMed

Laverty C, et al. Temperature rise and parasitic infection interact to increase the impact of an invasive species. INT J Parasitol. 2017;47:291–296. doi: 10.1016/j.ijpara.2016.12.004. PubMed DOI

Dick J, et al. Invader Relative Impact Potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J Appl Ecol. 2017;54:1259–1267. doi: 10.1111/1365-2664.12849. DOI

Englund G, Öhlund G, Hein CL, Diehl S. Temperature dependence of the functional response. Ecol. Lett. 2011;14:914–921. doi: 10.1111/j.1461-0248.2011.01661.x. PubMed DOI

Khosa D, et al. Temperature regime drives differential predatory performance in Largemouth Bass and Florida Bass. Environ. Biol. Fishes. 2020;103:67–76. doi: 10.1007/s10641-019-00933-z. DOI

Human KG, Gordon DM. Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia. 1996;105:405–412. doi: 10.1007/BF00328744. PubMed DOI

Holway, et al. The causes and consequences of ant invasions. Annu Rev Ecol Evol. 2002;33:181–233. doi: 10.1146/annurev.ecolsys.33.010802.150444. DOI

Cioni A, Gherardi F. Agonism and interference competition in freshwater decapods. Behaviour. 2004;141:1297–1324. doi: 10.1163/1568539042729702. DOI

Gherardi F, Daniels WH. Agonism and shelter competition between invasive and indigenous crayfish species. Can. J. Zool. 2004;82:1923–1932. doi: 10.1139/z04-185. DOI

Case TJ, Gilpin ME. Interference competition and niche theory. P Natl Acad Sci USA. 1974;71:3073–3077. doi: 10.1073/pnas.71.8.3073. PubMed DOI PMC

Langkilde T, Shine R. Competing for crevices: interspecific conflict influences retreat-site selection in montane lizards. Oecologia. 2004;140:684–691. doi: 10.1007/s00442-004-1640-1. PubMed DOI

Rowles AD, O’Dowd DJ. Interference competition by Argentine ants displaces native ants: implications for biotic resistance to invasion. Biol. Invasions. 2007;9:73–85. doi: 10.1007/s10530-006-9009-5. DOI

Corlett RT. Impacts of warming on tropical lowland rainforests. Trends Ecol Evol. 2011;26:606–613. doi: 10.1016/j.tree.2011.06.015. PubMed DOI

Barrios‐O’Neill D, et al. Predator‐free space, functional responses and biological invasions. Funct. Ecol. 2015;29:377–384. doi: 10.1111/1365-2435.12347. DOI

Sih A, Englund G, Wooster D. Emergent impacts of multiple predators on prey. Trends Ecol Evol. 1998;13:350–355. doi: 10.1016/S0169-5347(98)01437-2. PubMed DOI

Finke DL, Snyder WE. Conserving the benefits of predator biodiversity. Biol. Conserv. 2010;143:2260–2269. doi: 10.1016/j.biocon.2010.03.022. DOI

Griffin JN, Silliman BR. Resource partitioning and why it matters. Nature Education Knowledge. 2011;3:49.

Andrews RM, Pough FH. Metabolism of squamate reptiles: allometric and ecological relationships. Physiological Zoology. 1985;58:214–231. doi: 10.1086/physzool.58.2.30158569. DOI

Kraus, F. Alien reptiles and amphibians: a scientific compendium and analysis (Vol. 4). Springer, Netherlands, p. 562 (2009).

Gibbons JW, et al. The global decline of reptiles, déjà vu amphibians. BioScience. 2000;50:653–666. doi: 10.1641/0006-3568(2000)050[0653:TGDORD]2.0.CO;2. DOI

Kraus F. Impacts from invasive reptiles and amphibians. Annu Rev Ecol Evol S. 2015;46:75–97. doi: 10.1146/annurev-ecolsys-112414-054450. DOI

Bomford, M., Kraus, F., Braysher, M., Walter, L. & Brown, L. Risk assessment model for the import and keeping of exotic reptiles and amphibians. Canberra: Bureau of Rural Sciences for The Department of Environment and Heritage, p. 110, Available at, http://www.brs.gov.au (Accessed: 17 September 2019).

Kopecký, O., Kalous, L. & Patoka, J. (2013). Establishment risk from pet trade freshwater turtles in the European Union. KNOWL MANAG AQUAT EC. 410, p. 11; 10.1051/kmae/2013057 (2005).

Kopecký O, Patoka J, Kalous L. Establishment risk and potential invasiveness of the selected exotic amphibians from pet trade in the European Union. J. Nat. Conserv. 2016;31:22–28. doi: 10.1016/j.jnc.2016.02.007. DOI

Van Wilgen NJ, Richardson DM. The roles of climate, phylogenetic relatedness, introduction effort, and reproductive traits in the establishment of non‐native reptiles and amphibians. Cons Bio. 2012;26:267–277. doi: 10.1111/j.1523-1739.2011.01804.x. PubMed DOI

Popescu VD, Rozylowicz L, Cogălniceanu D, Niculae IM, Cucu AL. Moving into protected areas? Setting conservation priorities for Romanian reptiles and amphibians at risk from climate change. PLoS ONE. 2013;8:1–14. doi: 10.1371/journal.pone.0079330. PubMed DOI PMC

Fitzsimons J. Southward range expansion of the Mourning Gecko Lepidodactylus lugubris on mainland Australia and nearshore islands. Aust. J. Zool. 2011;35:619–621. doi: 10.7882/AZ.2011.013. DOI

Hoogmoed MS, Avila-Pires TC. Lepidodactylus lugubris (Duméril & Bibron 1836) (Reptilia: Gekkonidae), an introduced lizard new for Brazil, with remarks on and correction of its distribution in the New World. Zootaxa. 2015;4000:90–110. doi: 10.11646/zootaxa.4000.1.4. PubMed DOI

Griffing AH, Sanger TJ, Matamoros IC, Nielsen SV, Gamble T. Protocols for husbandry and embryo collection of a parthenogenetic gecko, Lepidodactylus lugubris (Squamata: Gekkonidae) Herpetol. Rev. 2018;49:230–235.

Seufer, H. G Artenbeschreibung und Haltung, Pflege und Zucht der bekanntesten Gecko-Arten. Albrecht Philler Verlag, Minden, pp. 112 (1985).

Nietzke, G. Die Terrarientiere 2. Ulmer, Germany, p. 322 (1998).

Werner YL. Do gravid females of oviparous gekkonid lizards maintain elevated body temperatures? Hemidactylus frenatus and Lepidodactylus lugubris on Oahu. Amphibia-Reptilia. 1990;11:200–204. doi: 10.1163/156853890X00627. DOI

Bolger DT, Case TJ. Divergent ecology of sympatric clones of the asexual gecko, Lepidodactylus lugubris. Oecologia. 1994;100:397–405. doi: 10.1007/BF00317861. PubMed DOI

Huey, R. B., Niewiarowski, P. H., Kaufmann, J. & Herron, J. C. Thermal biology of nocturnal ectotherms: is sprint performance of geckos maximal at low body temperatures?. Physiol. Zool. 62, 488–504, https://www.journals.uchicago.edu/doi/abs/10.1086/physzool.62.2.30156181 (1989). DOI

IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F. et al. (eds.)] Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1535 pp (2013).

Nowak EM, Theimer TC, Schuett GW. Functional and numerical responses of predators: where do vipers fit in the traditional paradigms? BIOL REV. 2008;83:601–620. doi: 10.1111/j.1469-185X.2008.00056.x. PubMed DOI

Holling CS. Some characteristics of simple types of predation and parasitism. Can Entomol. 1959;91:385–398. doi: 10.4039/Ent91385-7. DOI

Hassell, M. P. The dynamics of arthropod predator-prey systems. Princeton University Press (1978). PubMed

Dick JT, et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions. 2014;16:735–753. doi: 10.1007/s10530-013-0550-8. DOI

Bollache L, Dick JT, Farnsworth KD, Montgomery WI. Comparison of the functional responses of invasive and native amphipods. Biol. Lett. 2007;4:166–169. doi: 10.1098/rsbl.2007.0554. PubMed DOI PMC

Dick JT, et al. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biol. Invasions. 2013;15:837–846. doi: 10.1007/s10530-012-0332-8. DOI

South J, Dick JT, McCard M, Barrios-O’Neill D, Anton A. Predicting predatory impact of juvenile invasive lionfish (Pterois volitans) on a crustacean prey using functional response analysis: effects of temperature, habitat complexity and light regimes. Environ. Biol. Fishes. 2017;100:1155–1165. doi: 10.1007/s10641-017-0633-y. DOI

Huang X, et al. Diets structure of a common lizard Eremias argus and their effects on grasshoppers: Implications for a potential biological agent. J Asia-Pacentomol. 2016;19:133–138. doi: 10.1016/j.aspen.2015.12.013. DOI

Witz BW. The functional response of Cnemidophorus sexlineatus: laboratory versus field measurements. J. Herpetol. 1996;18:498–506. doi: 10.2307/1565692. DOI

Rödder D, Solé M, Böhme W. Predicting the potential distributions of two alien invasive House geckos (Gekkonidae: Hemidactylus frenatus, Hemidactylus mabouia) North-West J Zool. 2008;4:236–246.

Rödder D, Weinsheimer F. Will future anthropogenic climate change increase the potential distribution of the alien invasive Cuban treefrog (Anura: Hylidae)? J. Nat. Hist. 2009;43:1207–1217. doi: 10.1080/00222930902783752. DOI

Brown SG, Duffy PK. The effects of egg-laying site, temperature, and salt water on incubation time and hatching success in the gecko Lepidodactylus lugubris. J. Herpetol. 1992;26:510–513. doi: 10.2307/1565135. DOI

Dangles O, Carpio C, Barragan AR, Zeddam JL, Silvain JF. Temperature as a key driver of ecological sorting among invasive pest species in the tropical Andes. ECOL APPL. 2008;18:1795–1809. doi: 10.1890/07-1638.1. PubMed DOI

Cuthbert, R. N., Dickey, J. W., Coughlan, N. E., Joyce, P. W., & Dick, J. T. The Functional Response Ratio (FRR): advancing comparative metrics for predicting the ecological impacts of invasive alien species. Biol. Invasions 1–5 (2019).

Rall BC, et al. Universal temperature and body-mass scaling of feeding rates. Philos T R Soc B. 2012;367:2923–2934. doi: 10.1098/rstb.2012.0242. PubMed DOI PMC

Artacho P, Jouanneau I, Le Galliard JF. Interindividual variation in thermal sensitivity of maximal sprint speed, thermal behavior, and resting metabolic rate in a lizard. Physiol Biochem Zool. 2013;86:458–469. doi: 10.1086/671376. PubMed DOI

Dick JT, et al. Functional responses can unify invasion ecology. Biol. invasions. 2017;19:1667–1672. doi: 10.1007/s10530-016-1355-3. DOI

Veselý L, et al. Temperature and prey density jointly influence trophic and non‐trophic interactions in multiple predator communities. Freshw. Biol. 2019;00:1–10. doi: 10.1111/fwb.13387. DOI

Dickey JWE, et al. On the RIP: using Relative Impact Potential to assess the ecological impacts of invasive alien species. NeoBiota. 2020;55:27–60. doi: 10.3897/neobiota.55.49547. DOI

Perry G, Ritter M. Lepidodactylus lugubris (mourning gecko): nectivory and daytime activity. Herpetol. Rev. 1999;30:166–167.

Ineich, I. & Ota, H. Additional remarks on the unisexual-bisexual complex of the gecko, Lepidodactylus lugubris, in Takapoto Atoll, French Polynesia. Bulletin of the College of Science53, 31–39, http://hdl.handle.net/20.500.12000/5439 (1992).

Grismer, L. L. Lizards of Peninsular Malaysia, Singapore, and their adjacent archipelagos. Edition Chimaira, Frankfurt am Main, Germany, p. 728 (2011) PubMed

Salvidio S, Delaugerre M. Population dynamics of the European leaf-toed gecko (Euleptes europaea) in NW Italy: implications for conservation. HERPETOL J. 2003;13:81–88.

Short KH, Petren K. Boldness underlies foraging success of invasive Lepidodactylus lugubris geckos in the human landscape. Anim. Behav. 2008;76:429–437. doi: 10.1016/j.anbehav.2008.04.008. DOI

Manthey, U. & Grossmann, W. Amphibien & Reptilien Südostasiens. Natur und Tier-Verlag, Münster, Germany, p. 512 (1997)

Röll B. Lepidodactylus lugubris (Duméril & Bibron) Sauria. 2002;24:545–550.

Bomford M, Kraus F, Barry SC, Lawrence E. Predicting establishment success for exogenous reptiles and amphibians: a role for climate matching. Biol. Invasions. 2009;11:713–724. doi: 10.1007/s10530-008-9285-3. DOI

Linzmaier, S. M., & Jeschke, J. M. Towards a mechanistic understanding of individual‐level functional responses: Invasive crayfish as model organisms. Freshw. Biology65, 10.1111/fwb.13456 (2019).

Petren K, Case TJ. An experimental demonstration of exploitation competition in an ongoing invasion. Ecology. 1996;77:118–132. doi: 10.2307/2265661. DOI

Ota H. Female reproductive cycles in the northernmost populations of the two gekkonid lizards, Hemidactylus frenatus and Lepidodactylus lugubris. Ecol. Res. 1994;9:121–130. doi: 10.1007/BF02347487. DOI

Boissinot, S., Ineich, I., Thaler, L. & Guillaume, C. P. Hybrid origin and clonal diversity in the parthenogenetic gecko, Lepidodactylus lugubris in French Polynesia. J. Herpetol. 295–298, 10.2307/1565401 (1997).

Hanley KA, Bolger DT, Case TJ. Comparative ecology of sexual and asexual gecko species (Lepidodactylus) in French Polynesia. EVOL ECOL RES. 1994;8:438–454. doi: 10.1007/BF01238194. DOI

Yamashiro S, Toda M, Ota H. Clonal composition of the parthenogenetic gecko, Lepidodactylus lugubris, at the northernmost extremity of its range. ZOOL SCI. 2000;17:1013–1020. doi: 10.2108/zsj.17.1013. DOI

Rösler, H. G der Welt. Alle Gattungen. Urania, Leipzig, 236 pp (1995).

Umeya K, Kato T. Studies on the comparative ecology of bean weevils V. distribution of eggs and larvae of Acanthoscelides obtectus in relation to its oviposition and boring behaviour. POPUL ECOL. 1970;12:35–50. doi: 10.1007/BF02511080. DOI

Thakur DR. Taxonomy, distribution and pest status of Indian biotypes of Acanthoscelides obtectus (Coleoptera: Chrysomelidae: Bruchinae) - A new record. PAK J ZOOL. 2012;44:189–195.

Leroi, B. Feeding, longevity and reproduction of adults of Acanthoscelides obtectus Say in laboratory conditions. In: The ecology of Bruchids attacking legumes (Pulses). Springer, Dordrecht, pp. 101–111 (1981).

Messenger K. Behaviour of Lepidodactylus lugubris on Heron Island, Great Barrier Reef, and a record of Gehyra dubia from that island. Herpetofauna. 2005;35:37–39.

Limpus, C. J., Limpus, D. J. & Goldizen, A. Recent colonisation of Heron Island, southern Great Barrier Reef, by the mourning gecko, Lepidodactylus lugubris. Memoirs of the Queensland Museum, 43, 777–781, https://trove.nla.gov.au/version/234176520 (1999).

Alexander, M. E., Dick, J. T., Weyl, O. L., Robinson, T. B., & Richardson, D. M. Existing and emerging high impact invasive species are characterized by higher functional responses than natives. Biol. Lett. 10, 10.1098/rsbl.2013.0946 (2014). PubMed PMC

Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Springer, New York, USA, p. 574 (2009).

Juliano, S. A. Non-linear curve fitting: predation and functional response curve. Design and analysis of ecological experiment, 178–196 (2001).

Rogers D. Random search and insect population models. J Anim Ecol. 1972;41:369–83. doi: 10.2307/3474. DOI

Rosenbaum B, Rall BC. Fitting functional responses: Direct parameter estimation by simulating differential equations. Methods Ecol. Evol. 2018;9:2076–2090. doi: 10.1111/2041-210X.13039. DOI

Bolker, B. M. Ecological Models and Data in R. Princeton University Press, Princeton, USA and Oxford, United Kingdom, pp 408 (2008).

Bolker, B. M. emdbook: Ecological Models and Data in R; R package version 1.3.11 (2019).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...