• This record comes from PubMed

Short-term thermal acclimation modulates predator functional response

. 2022 Feb ; 12 (2) : e8631. [epub] 20220217

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Phenotypic plastic responses to temperature can modulate the kinetic effects of temperature on biological rates and traits and thus play an important role for species adaptation to climate change. However, there is little information on how these plastic responses to temperature can influence trophic interactions. Here, we conducted an experiment using marbled crayfish and their water louse prey to investigate how short-term thermal acclimation at two temperatures (16 and 24°C) modulates the predator functional response. We found that both functional response parameters (search rate and handling time) differed between the two experimental temperatures. However, the sign and magnitudes of these differences strongly depended on acclimation time. Acclimation to 16°C increased handling time and search rate whereas acclimation to 24°C leads to the opposite effects with shorter handling time and lower search rate for acclimated predators. Moreover, the strength of these effects increased with acclimation time so that the differences in search rate and handing time between the two temperatures were reversed between the treatment without acclimation and after 24 h of acclimation. Overall, we found that the magnitude of the acclimation effects can be as strong as the direct kinetic effects of temperature. Our study highlights the importance of taking into account short-term thermal plasticity to improve our understanding of the potential consequences of global warming on species interactions.

See more in PubMed

Abram, P. K. , Boivin, G. , Moiroux, J. , & Brodeur, J. (2017). Behavioural effects of temperature on ectothermic animals: Unifying thermal physiology and behavioural plasticity. Biological Reviews, 92, 1859–1876. 10.1111/brv.12312 PubMed DOI

Archer, L. C. , Sohlström, E. H. , Gallo, B. , Jochum, M. , Woodward, G. , Kordas, R. L. , Rall, B. C. , & O’Gorman, E. J. (2019). Consistent temperature dependence of functional response parameters and their use in predicting population abundance. Journal of Animal Ecology, 88, 1670–1683. 10.1111/1365-2656.13060 PubMed DOI PMC

Binzer, A. , Guill, C. , Brose, U. , & Rall, B. C. (2012). The dynamics of food chains under climate change and nutrient enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2935–2944. 10.1098/rstb.2012.0230 PubMed DOI PMC

Bolker, B. M. (2008). Ecological models and data in R. Princeton University Press.

Boukal, D. S. , Bideault, A. , Carreira, B. M. , & Sentis, A. (2019). Species interactions under climate change: Connecting kinetic effects of temperature on individuals to community dynamics. Current Opinion in Insect Science, 35, 88–95. 10.1016/j.cois.2019.06.014 PubMed DOI

Brown, J. H. , Gillooly, J. F. , Allen, A. P. , Savage, V. M. , & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771–1789. 10.1890/03-9000 DOI

Christensen, B. (1977). Habitat preference among amylase genotypes in Asellus aquaticus (Isopoda, Crustacea). Hereditas, 87, 21–26. 10.1111/j.1601-5223.1977.tb01240.x PubMed DOI

Daugaard, U. , Petchey, O. L. , & Pennekamp, F. (2019). Warming can destabilize predator–prey interactions by shifting the functional response from Type III to Type II. Journal of Animal Ecology, 88, 1575–1586. 10.1111/1365-2656.13053 PubMed DOI

Deere, J. A. , & Chown, S. L. (2006). Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. The American Naturalist, 168, 630–644. 10.1086/508026 PubMed DOI

Dell, A. I. , Pawar, S. , & Savage, V. M. (2011). Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences of the United States of America, 108, 10591–10596. 10.1073/pnas.1015178108 PubMed DOI PMC

DeWitt, T. J. , Sih, A. , & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution, 13, 77–81. 10.1016/S0169-5347(97)01274-3 PubMed DOI

Dietz, T. J. , & Somero, G. N. (1992). The threshold induction temperature of the 90‐kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (genus Gillichthys). Proceedings of the National Academy of Sciences of the United States of America, 89, 3389–3393. 10.1073/pnas.89.8.3389 PubMed DOI PMC

Donelson, J. M. , Munday, P. L. , McCormick, M. , & Nilsson, G. E. (2011). Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish. Global Change Biology, 17, 1712–1719. 10.1111/j.1365-2486.2010.02339.x DOI

Englund, G. , Ohlund, G. , Hein, C. L. , & Diehl, S. (2011). Temperature dependence of the functional response. Ecology Letters, 14, 914–921. 10.1111/j.1461-0248.2011.01661.x PubMed DOI

Frazier, M. R. , Huey, R. B. , & Berrigan, D. (2006). Thermodynamics constrains the evolution of insect population growth rates: “Warmer Is Better”. The American Naturalist, 168, 512–520. 10.1086/506977 PubMed DOI

Gebauer, R. , Veselý, L. , Kouba, A. , Buřič, M. , & Drozd, B. (2018). Forecasting impact of existing and emerging invasive gobiids under temperature change using comparative functional responses. Aquatic Invasions, 13(2), 289–297. 10.3391/ai.2018.13.2.09 DOI

Gilbert, B. , Tunney, T. D. , McCann, K. S. , DeLong, J. P. , Vasseur, D. A. , Savage, V. , Shurin, J. B. , Dell, A. I. , Barton, B. T. , Harley, C. D. G. , Kharouba, H. M. , Kratina, P. , Blanchard, J. L. , Clements, C. , Winder, M. , Greig, H. S. , & O’Connor, M. I. (2014). A bioenergetic framework for the temperature dependence of trophic interactions. Ecology Letters, 17, 902–9014. 10.1111/ele.12307 PubMed DOI

Gilman, S. E. , Urban, M. C. , Tewksbury, J. , Gilchrist, G. W. , & Holt, R. D. (2010). A framework for community interactions under climate change. Trends in Ecology & Evolution, 25, 325–331. 10.1016/j.tree.2010.03.002 PubMed DOI

Haubrock, P. J. , Cuthbert, R. N. , Veselý, L. , Balzani, P. , Baker, N. J. , Dick, J. T. , & Kouba, A. (2020). Predatory functional responses under increasing temperatures of two life stages of an invasive gecko. Scientific Reports, 10, 1–10. 10.1038/s41598-020-67194-0 PubMed DOI PMC

Hossain, M. S. , Patoka, J. , Kouba, A. , & Buřič, M. (2018). Clonal crayfish as biological model: A review on marbled crayfish. Biologia, 73, 841–855.

Iles, A. C. (2014). Towards predicting community level effects of climate: relative temperature scaling of metabolic and ingestion rates. Ecology, 95, 2657–2668.

IPCC . (2013). Climate Change 2013: The physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

IPCC . (2018). Global warming of 1.5°C: An IPCC. Special report on the impacts of global warming of 1.5°C above pre‐industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Intergovernmental Panel on Climate Change.

Jeschke, J. M. , Kopp, M. , & Tollrian, R. (2002). Predator functional responses: Discriminating between handling and digesting prey. Ecological Monographs, 72, 95–112.

Juliano, S. A. (2001). Nonlinear curve fitting: predation and functional response curves. In Scheiner S. M., & Gurevitch J. (Eds.), Design and analysis of ecological experiments (pp. 178‐196). Oxford University Press.

Knies, J. L. , Kingsolver Joel, G. , & Burch Christina, L. (2009). Hotter is better and broader: Thermal sensitivity of fitness in a population of bacteriophages. The American Naturalist, 173, 419–430. 10.1086/597224 PubMed DOI

Kratina, P. , Greig, H. S. , Thompson, P. L. , Carvalho‐Pereira, T. S. A. , & Shurin, J. B. (2012). Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology, 93, 1421–1430. 10.1890/11-1595.1 PubMed DOI

Novich, R. A. , Erickson, E. K. , Kalinoski, R. M. , & DeLong, J. P. (2014). The temperature independence of interaction strength in a sit‐and‐wait predator. Ecosphere, 5, art137. 10.1890/ES14-00216.1 DOI

O’Connor, M. I. (2009). Warming strengthens an herbivore: Plant interaction. Ecology, 90, 388–398. 10.1890/08-0034.1 PubMed DOI

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669. 10.1146/annurev.ecolsys.37.091305.110100 DOI

Parmesan, C. , Ryrholm, N. , Stefanescu, C. , Hill, J. K. , Thomas, C. D. , Descimon, H. , Huntley, B. , Kaila, L. , Kullberg, J. , Tammaru, T. , Tennent, W. J. , Thomas, J. A. , & Warren, M. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579–583. 10.1038/21181 DOI

Patoka, J. , Buřič, M. , Kolář, V. , Bláha, M. , Petrtýl, M. , Franta, P. , Tropek, R. , Kalous, L. , Petrusek, A. , & Kouba, A. (2016). Predictions of marbled crayfish establishment in conurbations fulfilled: Evidences from the Czech Republic. Biologia, 71, 1380–1385. 10.1515/biolog-2016-0164 DOI

Prats, J. , Roubeix, V. , Reynaud, N. , Tormos, T. , & Danis, P.‐A. (2020). The thermal behaviour of French water bodies: From ponds to Lake Geneva. Journal of Great Lakes Research, 46(4), 718–731. 10.1016/j.jglr.2020.04.001 DOI

Pritchard, D. W. (2014). frair: A package for functional response analysis in R.

Raffel, T. R. , Romansic, J. M. , Halstead, N. T. , McMahon, T. A. , Venesky, M. D. , & Rohr, J. R. (2013). Disease and thermal acclimation in a more variable and unpredictable climate. Nature Climate Change, 3, 146–151. 10.1038/nclimate1659 DOI

Rall, B. C. , Brose, U. , Hartvig, M. , Kalinkat, G. , Schwarzmüller, F. , Vucic‐Pestic, O. , & Petchey, O. L. (2012). Universal temperature and body‐mass scaling of feeding rates. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2923–2934. 10.1098/rstb.2012.0242 PubMed DOI PMC

Rip, J. M. K. , & McCann, K. S. (2011). Cross‐ecosystem differences in stability and the principle of energy flux. Ecology Letters, 14, 733–740. 10.1111/j.1461-0248.2011.01636.x PubMed DOI

Rogers, D. (1972). Random search and insect population models. The Journal of Animal Ecology, 42, 369–383. 10.2307/3474 DOI

Rohr, J. R. , Civitello, D. J. , Cohen, J. M. , Roznik, E. A. , Sinervo, B. , & Dell, A. I. (2018). The complex drivers of thermal acclimation and breadth in ectotherms. Ecology Letters, 21, 1425–1439. 10.1111/ele.13107 PubMed DOI

Rosenblatt, A. E. , & Schmitz, O. J. (2016). Climate change, nutrition, and bottom‐up and top‐down food web processes. Trends in Ecology & Evolution. 10.1016/j.tree.2016.09.009 PubMed DOI

Sandoval‐Castillo, J. , Gates, K. , Brauer, C. J. , Smith, S. , Bernatchez, L. , & Beheregaray, L. B. (2020). Adaptation of plasticity to projected maximum temperatures and across climatically defined bioregions. Proceedings of the National Academy of Sciences of the United States of America, 117(29), 17112–17121. 10.1073/pnas.1921124117 PubMed DOI PMC

Schulte, P. M. , Healy, T. M. , & Fangue, N. A. (2011). Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integrative and Comparative Biology, 51, 691–702. 10.1093/icb/icr097 PubMed DOI

Seitz, R. , Vilpoux, K. , Hopp, U. , Harzsch, S. , & Maier, G. (2005). Ontogeny of the Marmorkrebs (marbled crayfish): A parthenogenetic crayfish with unknown origin and phylogenetic position. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 303, 393–405. PubMed

Sentis, A. , Binzer, A. , & Boukal, D. S. (2017). Temperature‐size responses alter food chain persistence across environmental gradients. Ecology Letters, 20, 852–862. 10.1111/ele.12779 PubMed DOI

Sentis, A. , Hemptinne, J. L. , & Brodeur, J. (2012). Using functional response modeling to investigate the effect of temperature on predator feeding rate and energetic efficiency. Oecologia, 169, 1117–1125. 10.1007/s00442-012-2255-6 PubMed DOI

Sentis, A. , Hemptinne, J. L. , & Brodeur, J. (2013). Parsing handling time into its components: Implications for responses to a temperature gradient. Ecology, 94, 1675–1680. 10.1890/12-2107.1 PubMed DOI

Sentis, A. , Hemptinne, J. L. , & Brodeur, J. (2014). Towards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food‐web structure. Ecology Letters, 17, 785–793. 10.1111/ele.12281 PubMed DOI

Sentis, A. , Morisson, J. , & Boukal, D. S. (2015). Thermal acclimation modulates the impacts of temperature and enrichment on trophic interaction strengths and population dynamics. Global Change Biology, 21, 3290–3298. 10.1111/gcb.12931 PubMed DOI

Sinclair, B. J. , Marshall, K. E. , Sewell, M. A. , Levesque, D. L. , Willett, C. S. , Slotsbo, S. , Dong, Y. , Harley, C. D. G. , Marshall, D. J. , Helmuth, B. S. , & Huey, R. B. (2016). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology Letters, 19, 1372–1385. 10.1111/ele.12686 PubMed DOI

South, J. , & Dick, J. T. A. (2017). Effects of acute and chronic temperature changes on the functional responses of the dogfish Scyliorhinus canicula (Linnaeus, 1758) towards amphipod prey Echinogammarus marinus (Leach, 1815). Environmental Biology of Fishes, 100, 1251–1263. 10.1007/s10641-017-0640-z DOI

Stoks, R. , Geerts, A. N. , & De Meester, L. (2013). Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential. Evolutionary Applications, 7(1), 42–55. 10.1111/eva.12108 PubMed DOI PMC

Stoks, R. , Govaert, L. , Pauwels, K. , Jansen, B. , & De Meester, L. (2015). Resurrecting complexity: the interplay of plasticity and rapid evolution in the multiple trait response to strong changes in predation pressure in the water flea Daphnia magna. Ecology Letters, 19(2), 180–190. PubMed

Terblanche, J. S. , Janion, C. , & Chown, S. L. (2007). Variation in scorpion metabolic rate and rate–temperature relationships: Implications for the fundamental equation of the metabolic theory of ecology. Journal of Evolutionary Biology, 20, 1602–1612. 10.1111/j.1420-9101.2007.01322.x PubMed DOI

Uszko, W. , Diehl, S. , Englund, G. , & Amarasekare, P. (2017). Effects of warming on predator–prey interactions – A resource‐based approach and a theoretical synthesis. Ecology Letters, 20, 513–523. 10.1111/ele.12755 PubMed DOI

Vasseur, D. A. , DeLong, J. P. , Gilbert, B. , Greig, H. S. , Harley, C. D. G. , McCann, K. S. , Savage, V. , Tunney, T. D. , & O’Connor, M. I. (2014). Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences, 281, 20132612. 10.1098/rspb.2013.2612 PubMed DOI PMC

Veselý, L. , Boukal, D. S. , Buřič, M. , Kozák, P. , Kouba, A. , & Sentis, A. (2017). Effects of prey density, temperature and predator diversity on nonconsumptive predator‐driven mortality in a freshwater food web. Scientific Reports, 7, 18075. 10.1038/s41598-017-17998-4 PubMed DOI PMC

Veselý, L. , Boukal, D. S. , Buřič, M. , Kuklina, I. , Fořt, M. , Yazicioglu, B. , Prchal, M. , Kozák, P. , Kouba, A. , & Sentis, A. (2019a). Temperature and prey density jointly influence trophic and non‐trophic interactions in multiple predator communities. Freshwater Biology, 64, 1984–1993. 10.1111/fwb.13387 DOI

Veselý, L. , Boukal, D. S. , Buřič, M. , Kuklina, I. , Fořt, M. , Yazicioglu, B. , Prchal, M. , Kozák, P. , Kouba, A. , & Sentis, A. (2019b). Temperature and prey density jointly influence trophic and non‐trophic interactions in multiple predator communities. Freshwater Biology, 64, 1984–1993. 10.1111/fwb.13387 DOI

Vogt, G. (2011). Marmorkrebs: Natural crayfish clone as emerging model for various biological disciplines. Journal of Biosciences, 36, 377–382. PubMed

Vucic‐Pestic, O. , Ehnes, R. B. , Rall, B. C. , & Brose, U. (2011). Warming up the system: Higher predator feeding rates but lower energetic efficiencies. Global Change Biology, 17, 1301–1310. 10.1111/j.1365-2486.2010.02329.x DOI

Wang, Y. J. , Sentis, A. , Tüzün, N. , & Stoks, R. (2021). Thermal evolution ameliorates the long‐term plastic effects of warming, temperature fluctuations and heat waves on predator‐prey interaction strength. Functional Ecology, 35(7), 1538–1549. 10.1111/1365-2435.13810 DOI

Wang, Y. J. , Stoks, R. , Sentis, A. , & Tüzün, N. (2020). Support for the climatic variability hypothesis depends on the type of thermal plasticity: Lessons from predation rates. Oikos, 129, 1040–1050. 10.1111/oik.07181 DOI

Wasserman, R. J. , Alexander, M. E. , Dalu, T. , Ellender, B. R. , Kaiser, H. , & Weyl, O. L. F. (2016). Using functional responses to quantify interaction effects among predators. Functional Ecology, 30, 1988–1998. 10.1111/1365-2435.12682 DOI

Wilson, R. , & Franklin, C. (2002). Testing the beneficial acclimation hypothesis. Trends in Ecology & Evolution, 17, 66–70. 10.1016/S0169-5347(01)02384-9 DOI

See more in PubMed

Dryad
10.5061/dryad.mgqnk991n

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...