The effect of light quality and quantity on carbon allocation in Chromera velia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NPU 1 - LO 1416
Ministerstvo Školství, Mládeže a Tělovýchovy
14-15728S
Grantová Agentura České Republiky
PubMed
31399911
DOI
10.1007/s12223-019-00734-y
PII: 10.1007/s12223-019-00734-y
Knihovny.cz E-zdroje
- MeSH
- Alveolata růst a vývoj metabolismus účinky záření MeSH
- chlorofyl a metabolismus MeSH
- fotosyntéza účinky záření MeSH
- světlo MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl a MeSH
- uhlík MeSH
Chromera velia is a marine photosynthetic relative of human apicomplexan parasites. It has been isolated from coral reefs and is indicted for being involved in symbioses with hermatypic corals. C. velia has been subject to intensive research, but still very little is known of its response to light quality and quantity. Here, we have studied the growth and compositional responses of C. velia to culture under monochromatic light (blue, green or red), at two photon flux densities (PFD, 20 and 100 μmol photons m-2 s-1). Our results show that C. velia growth rate is unaffected by the quality of light, whereas it responds to PFD. However, light quality influenced cell size, which was smaller for cells exposed to blue monochromatic light, regardless of PFD. PFD strongly influenced carbon allocation: at 20 μmol photons m-2 s-1, carbon was mainly allocated into proteins while at 100 μmol photons m-2 s-1, carbon was allocated mainly into carbohydrate and lipid pools. The blue light treatment caused a decrease in the lipids and carbohydrates to proteins and thus suggested to affect nitrogen metabolism in acclimated cells. Whole-cell absorption spectra revealed the existence of red-shifted chlorophyll a antenna not only under red light but in all low PFD treatments. These findings show the ability of C. velia to successfully adapt and thrive in spectrally very different environments of coral reefs.
Zobrazit více v PubMed
Bioresour Technol. 2011 Feb;102(4):3883-7 PubMed
Curr Opin Plant Biol. 2013 Jun;16(3):307-14 PubMed
PLoS One. 2014 Mar 21;9(3):e92781 PubMed
J Biol Chem. 2011 Aug 26;286(34):29893-903 PubMed
J Exp Bot. 2017 Jun 1;68(14):3829-3839 PubMed
Photosynth Res. 2009 Mar;99(3):185-93 PubMed
Protist. 2013 Mar;164(2):237-44 PubMed
ISME J. 2018 Mar;12(3):776-790 PubMed
Nature. 2008 Feb 21;451(7181):959-63 PubMed
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10949-54 PubMed
PLoS One. 2014 Aug 11;9(8):e99727 PubMed
Biochim Biophys Acta. 2014 Jun;1837(6):734-43 PubMed
Trends Plant Sci. 2011 Aug;16(8):427-31 PubMed
PLoS One. 2012;7(10):e47036 PubMed
J Eukaryot Microbiol. 2012 May-Jun;59(3):191-7 PubMed
Photosynth Res. 1993 Mar;35(3):247-63 PubMed
Plant Physiol. 1991 Feb;95(2):374-8 PubMed
J Phycol. 2011 Apr;47(2):313-23 PubMed
Environ Microbiol. 2018 Aug;20(8):2824-2833 PubMed
J Photochem Photobiol B. 2005 Aug 1;80(2):71-8 PubMed
FEBS Lett. 2011 Jun 23;585(12):1941-5 PubMed
Plant Cell Environ. 2017 Feb;40(2):227-236 PubMed
J Phycol. 2017 Apr;53(2):298-307 PubMed
Plant Physiol. 1983 Feb;71(2):286-90 PubMed
Protist. 2011 Jan;162(1):115-30 PubMed
Biochim Biophys Acta. 1999 Jun 30;1412(2):94-107 PubMed
EMBO Rep. 2009 Jun;10(6):655-61 PubMed
Biochim Biophys Acta. 2014 Jun;1837(6):802-10 PubMed
ISME J. 2013 Feb;7(2):444-7 PubMed
Nature. 2016 Sep 22;537(7621):563-566 PubMed
Special issue dedicated to the memory of Ivan Šetlík