Effects of prey density, temperature and predator diversity on nonconsumptive predator-driven mortality in a freshwater food web
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29273716
PubMed Central
PMC5741715
DOI
10.1038/s41598-017-17998-4
PII: 10.1038/s41598-017-17998-4
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- kapři MeSH
- populační dynamika MeSH
- potravní řetězec * MeSH
- predátorské chování * MeSH
- severní raci MeSH
- sladká voda MeSH
- teplota * MeSH
- vážky MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nonconsumptive predator-driven mortality (NCM), defined as prey mortality due to predation that does not result in prey consumption, is an underestimated component of predator-prey interactions with possible implications for population dynamics and ecosystem functioning. However, the biotic and abiotic factors influencing this mortality component remain largely unexplored, leaving a gap in our understanding of the impacts of environmental change on ecological communities. We investigated the effects of temperature, prey density, and predator diversity and density on NCM in an aquatic food web module composed of dragonfly larvae (Aeshna cyanea) and marbled crayfish (Procambarus fallax f. virginalis) preying on common carp (Cyprinus carpio) fry. We found that NCM increased with prey density and depended on the functional diversity and density of the predator community. Warming significantly reduced NCM only in the dragonfly larvae but the magnitude depended on dragonfly larvae density. Our results indicate that energy transfer across trophic levels is more efficient due to lower NCM in functionally diverse predator communities, at lower resource densities and at higher temperatures. This suggests that environmental changes such as climate warming and reduced resource availability could increase the efficiency of energy transfer in food webs only if functionally diverse predator communities are conserved.
Zobrazit více v PubMed
Brook BW, Sodhi NS, Bradshaw CJ. Synergies among extinction drivers under global change. Trends in Ecology & Evolution. 2008;23:453–460. doi: 10.1016/j.tree.2008.03.011. PubMed DOI
Potts SG, et al. Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution. 2010;25:345–353. doi: 10.1016/j.tree.2010.01.007. PubMed DOI
Hoegh-Guldberg O, Bruno JF. The impact of climate change on the world’s marine ecosystems. Science. 2010;328:1523–1528. doi: 10.1126/science.1189930. PubMed DOI
Porter EM, et al. Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity. Biogeochemistry. 2013;114:93–120. doi: 10.1007/s10533-012-9803-3. DOI
Tylianakis JM, Didham RK, Bascompte J, Wardle DA. Global change and species interactions in terrestrial ecosystems. Ecology Letters. 2008;11:1351–1363. doi: 10.1111/j.1461-0248.2008.01250.x. PubMed DOI
Sentis A, Gémard C, Jaugeon B, Boukal DS. Predator diversity and environmental change modify the strengths of trophic and nontrophic interactions. Global Change Biology. 2017;23:2629–2640. doi: 10.1111/gcb.13560. PubMed DOI
Corvalan, C., Hales, S. & McMichael, A. Ecosystems and Human Well-Being. Vol. 5 (Island press Washington, DC, 2005).
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. Toward a metabolic theory of ecology. Ecology. 2004;85:1771–1789. doi: 10.1890/03-9000. DOI
Rall BC, Vucic-Pestic O, Ehnes RB, Emmerson M, Brose U. Temperature, predator–prey interaction strength and population stability. Global Change Biology. 2010;16:2145–2157. doi: 10.1111/j.1365-2486.2009.02124.x. DOI
Jeschke JM, Kopp M, Tollrian R. Predator functional responses: discriminating between handling and digesting prey. Ecological Monographs. 2002;72:95–112. doi: 10.1890/0012-9615(2002)072[0095:PFRDBH]2.0.CO;2. DOI
Preisser EL, Bolnick DI. The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations. PloS ONE. 2008;3:e2465. doi: 10.1371/journal.pone.0002465. PubMed DOI PMC
Kruuk H. Surplus killing by carnivores. Journal of Zoology. 1972;166:233–244. doi: 10.1111/j.1469-7998.1972.tb04087.x. DOI
Oksanen T, Oksanen L, Fretwell SD. Surplus killing in the hunting strategy of small predators. The American Naturalist. 1985;126:328–346. doi: 10.1086/284420. DOI
Sih A, Englund G, Wooster D. Emergent impacts of multiple predators on prey. Trends in Ecology and Evolution. 1998;13:350–355. doi: 10.1016/S0169-5347(98)01437-2. PubMed DOI
Charnov EL. Optimal foraging, the marginal value theorem. Theoretical Population Biology. 1976;9:129–136. doi: 10.1016/0040-5809(76)90040-X. PubMed DOI
Short J, Kinnear J, Robley A. Surplus killing by introduced predators in Australia—evidence for ineffective anti-predator adaptations in native prey species? Biological Conservation. 2002;103:283–301. doi: 10.1016/S0006-3207(01)00139-2. DOI
Moore N, Roy S, Helyar A. Mink (Mustela vison) eradication to protect ground‐nesting birds in the Western Isles, Scotland, United Kingdom. New Zealand Journal of Zoology. 2003;30:443–452. doi: 10.1080/03014223.2003.9518351. DOI
Peck D, Faulquier L, Pinet P, Jaquemet S, Le Corre M. Feral cat diet and impact on sooty terns at Juan de Nova Island, Mozambique Channel. Animal Conservation. 2008;11:65–74. doi: 10.1111/j.1469-1795.2007.00153.x. DOI
Stoks R, Govaert L, Pauwels K, Jansen B, De Meester L. Resurrecting complexity: the interplay of plasticity and rapid evolution in the multiple trait response to strong changes in predation pressure in the water flea Daphnia magna. Ecology Letters. 2016;19:180–190. doi: 10.1111/ele.12551. PubMed DOI
Trussell GC, Ewanchuk PJ, Matassa CM. The fear of being eaten reduces energy transfer in a simple food chain. Ecology. 2006;87:2979–2984. doi: 10.1890/0012-9658(2006)87[2979:TFOBER]2.0.CO;2. PubMed DOI
Fraker ME. Predation risk assessment by green frog (Rana clamitans) tadpoles through chemical cues produced by multiple prey. Behavioral Ecology and Sociobiology. 2009;63:1397–1402. doi: 10.1007/s00265-009-0822-6. DOI
Preisser EL. The physiology of predator stress in free‐ranging prey. Journal of Animal Ecology. 2009;78:1103–1105. doi: 10.1111/j.1365-2656.2009.01602.x. PubMed DOI
Siepielski AM, Wang J, Prince G. Nonconsumptive predator-driven mortality causes natural selection on prey. Evolution. 2014;68:696–704. doi: 10.1111/evo.12294. PubMed DOI
McCauley SJ, Rowe L, Fortin M-J. The deadly effects of “nonlethal” predators. Ecology. 2011;92:2043–2048. doi: 10.1890/11-0455.1. PubMed DOI
Preisser E, Bolnick D, Benard M. The high cost of fear: behavioral effects dominate predator-prey interactions. Ecology. 2005;86:501–509. doi: 10.1890/04-0719. DOI
Stephens, D. W. & Krebs, J. R. Foraging Theory. (Princeton University Press, 1986).
Sih A. Optimal foraging: partial consumption of prey. American Naturalist. 1980;116:281–290. doi: 10.1086/283626. DOI
Knarrum V, et al. Brown bear predation on domestic sheep in central Norway. Ursus. 2006;17:67–74. doi: 10.2192/1537-6176(2006)17[67:BBPODS]2.0.CO;2. DOI
Gende S, Quinn T, Willson M. Consumption choice by bears feeding on salmon. Oecologia. 2001;127:372–382. doi: 10.1007/s004420000590. PubMed DOI
Samu F, Biro Z. Functional response, multiple feeding and wasteful killing in a wolf spider (Araneae: Lycosidae) European Journal of Entomology. 1993;90:471–476.
Andersson M, Erlinge S. Influence of predation on rodent populations. Oikos. 1977;29:591–597. doi: 10.2307/3543597. DOI
Patterson BR. Surplus killing of White-tailed deer, Odocoileus virginianus, by coyotes, Canis lantrans, in Nova-Scotia. Canadian Field-Naturalist. 1994;108:484–487.
Mech LD, Smith DW, Murphy KM, MacNulty DR. Winter severity and wolf predation on a formerly wolf-free elk herd. The Journal of Wildlife Management. 2001;65:998–1003. doi: 10.2307/3803048. DOI
Fantinou A, Perdikis DC, Maselou D, Lambropoulos P. Prey killing without consumption: Does Macrolophus pygmaeus show adaptive foraging behaviour? Biological Control. 2008;47:187–193. doi: 10.1016/j.biocontrol.2008.08.004. DOI
Maupin JL, Riechert SE. Superfluous killing in spiders: a consequence of adaptation to food-limited environments? Behavioral Ecology. 2001;12:569–576. doi: 10.1093/beheco/12.5.569. DOI
Dudgeon D. Feeding by the aquatic heteropteran, Diplonychus rusticum (Belostomatidae): an effect of prey density on meal size. Hydrobiologia. 1990;190:93–96. doi: 10.1007/BF00020691. DOI
Neves R, Angermeier P. Habitat alteration and its effects on native fishes in the upper Tennessee River system, east‐central USA. Journal of Fish Biology. 1990;37:45–52. doi: 10.1111/j.1095-8649.1990.tb05019.x. DOI
Kennish, M. J. Pollution Impacts on Marine Biotic Communities. Vol. 14 (CRC Press, 1997).
Poff N, Brinson MM, Day J. Aquatic ecosystems and globalclimate change. Pew Center on Global Climate Change, Arlington, VA. 2002;44:1–36.
Harley CD, et al. The impacts of climate change in coastal marine systems. Ecology Letters. 2006;9:228–241. doi: 10.1111/j.1461-0248.2005.00871.x. PubMed DOI
Barrios-O’Neill D, Dick J, Emmerson M, Ricciardi A, MacIsaac H. Predator‐free space, functional responses and biological invasions. Functional Ecology. 2015;29:377–384. doi: 10.1111/1365-2435.12347. DOI
Duffy JE, et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters. 2007;10:522–538. doi: 10.1111/j.1461-0248.2007.01037.x. PubMed DOI
Schmitz OJ. Predator diversity and trophic interactions. Ecology. 2007;88:2415–2426. doi: 10.1890/06-0937.1. PubMed DOI
Wasserman RJ, et al. Using functional responses to quantify interaction effects among predators. Functional Ecology. 2016;30:1988–1998. doi: 10.1111/1365-2435.12682. DOI
McCoy MW, Stier AC, Osenberg CW. Emergent effects of multiple predators on prey survival: the importance of depletion and the functional response. Ecology Letters. 2012;15:1449–1456. doi: 10.1111/ele.12005. PubMed DOI
Snyder WE, Snyder GB, Finke DL, Straub CS. Predator biodiversity strengthens herbivore suppression. Ecology Letters. 2006;9:789–796. doi: 10.1111/j.1461-0248.2006.00922.x. PubMed DOI
Benke AC. Interactions among coexisting predators–a field experiment with dragonfly larvae. The Journal of Animal Ecology. 1978;47:335–350. doi: 10.2307/3787. DOI
Russo R. Comparison of predatory behavior in five species of Toxorhynchites (Diptera: Culicidae) Annals of the Entomological Society of America. 1986;79:715–722. doi: 10.1093/aesa/79.4.715. DOI
Finke DL, Denno RF. Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecology Letters. 2005;8:1299–1306. doi: 10.1111/j.1461-0248.2005.00832.x. DOI
Finke DL, Denno RF. Predator diversity dampens trophic cascades. Nature. 2004;429:407–410. doi: 10.1038/nature02554. PubMed DOI
Finke DL, Snyder WE. Niche partitioning increases resource exploitation by diverse communities. Science. 2008;321:1488–1490. doi: 10.1126/science.1160854. PubMed DOI
Rall BC, et al. Universal temperature and body-mass scaling of feeding rates. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 2012;367:2923–2934. doi: 10.1098/rstb.2012.0242. PubMed DOI PMC
Jędrzejewska B, Jędrzejewski W. Seasonal surplus killing as hunting strategy of the weasel Mustela nivalis-test of a hypothesis. Acta Theriologica. 1989;34:347–359. doi: 10.4098/AT.arch.89-34. DOI
Montagnes DJ, Fenton A. Prey-abundance affects zooplankton assimilation efficiency and the outcome of biogeochemical models. Ecological Modelling. 2012;243:1–7. doi: 10.1016/j.ecolmodel.2012.05.006. DOI
Lang A, Gsödl S. “Superfluous killing” of aphids: a potentially beneficial behaviour of the predator Poecilus cupreus (L.)(Coleoptera: Carabidae)?„Töten von Blattläusen im Überfluss “: ein potentiell vorteilhaftes Verhalten des Räubers Poecilus cupreus (L.)(Coleoptera: Carabidae)? Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection. 2003;110:583–590.
Johnson DM, Akre BG, Crowley PH. Modeling arthropod predation: wasteful killing by damselfly naiads. Ecology. 1975;56:1081–1093. doi: 10.2307/1936148. DOI
Anderson TW. Predator responses, prey refuges, and density‐dependent mortality of a marine fish. Ecology. 2001;82:245–257. doi: 10.1890/0012-9658(2001)082[0245:PRPRAD]2.0.CO;2. DOI
Conte F. Stress and the welfare of cultured fish. Applied Animal Behaviour Science. 2004;86:205–223. doi: 10.1016/j.applanim.2004.02.003. DOI
Worm B, et al. Impacts of biodiversity loss on ocean ecosystem services. Science. 2006;314:787–790. doi: 10.1126/science.1132294. PubMed DOI
Griffin J, Byrnes J, Cardinale B. Effects of predator richness on prey suppression: a meta-analysis. Ecology. 2013;94:2180–2187. doi: 10.1890/13-0179.1. PubMed DOI
Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD. A framework for community interactions under climate change. Trends in Ecology & Evolution. 2010;25:325–331. doi: 10.1016/j.tree.2010.03.002. PubMed DOI
Corbet, P. Dragonflies: Behavior and Ecology of Odonata. (Harley Books, United Kingdom., 1999).
Patoka J, et al. Predictions of marbled crayfish establishment in conurbations fulfilled: evidences from the Czech Republic. Biologia. 2016;71:1380–1385. doi: 10.1515/biolog-2016-0164. DOI
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (Springer, 2009).
Soluk DA. Multiple predator effects: predicting combined functional response of stream fish and invertebrate predators. Ecology. 1993;74:219–225. doi: 10.2307/1939516. DOI
R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2016).