The Invasive Round Goby Neogobius melanostomus as a Potential Threat to Native Crayfish Populations

. 2021 Aug 12 ; 11 (8) : . [epub] 20210812

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34438835

Despite the spread of round goby Neogobius melanostomus into freshwater streams, there is a lack of information with respect to its effect on macroinvertebrate communities, especially crustaceans. We studied foraging efficiency of N. melanostomus on Procambarus virginalis and Asellus aquaticus, using a functional response (FR) approach. Stocking density of the prey species was manipulated to determine its effect on consumer utilization, with prey offered separately or combined at 1:1, 3:1, and 1:3 at each tested density. For both prey species, N. melanostomus exhibited type II FR, occasionally with a high proportion of non-consumptive mortality. Procambarus virginalis suffered a significantly higher attack rate compared to A. aquaticus. Neogobius melanostomus killed significantly more of the most prevalent prey, regardless of species. In trials with prey species of equal proportions, a difference in the number of each species killed was observed only at the highest density, at which P. virginalis was preferred. Neogobius melanostomus may be an important driver of population dynamics of prey species in the wild. The non-selective prey consumption makes N. melanostomus a potential threat to macrozoobenthic communities of river tributaries.

Zobrazit více v PubMed

Dorn N., Mittelbach G. More than predator and prey: A review of interactions between fish and crayfish. Vie Milieu. 1999;49:229–237.

Creed R.P., Jr., Reed J.M. Ecosystem engineering by crayfish in a headwater stream community. J. N. Am. Benthol. Soc. 2004;23:224–236. doi: 10.1899/0887-3593(2004)023<0224:EEBCIA>2.0.CO;2. DOI

Dorn N.J., Wojdak J.M. The role of omnivorous crayfish in littoral communities. Oecologia. 2004;140:150–159. doi: 10.1007/s00442-004-1548-9. PubMed DOI

Stenroth P., Holmqvist N., Nyström P., Berglund O., Larsson P., Granéli W. The influence of productivity and width of littoral zone on the trophic position of a large-bodied omnivore. Oecologia. 2008;156:681–690. doi: 10.1007/s00442-008-1019-9. PubMed DOI

Edwards B.A., Jackson D.A., Somers K.M. Multispecies crayfish declines in lakes: Implications for species distributions and richness. J. N. Am. Benthol. Soc. 2009;28:719–732. doi: 10.1899/08-148.1. DOI

Reynolds J., Souty-Grosset C., Richardson A. Ecological roles of crayfish in freshwater and terrestrial habitats. Freshw. Crayfish. 2013;19:197–218.

Richman N.I., Böhm M., Adams S.B., Alvarez F., Bergey E.A., Bunn J.J.S., Burnham Q., Cordeiro J., Coughran J., Crandall K.A., et al. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea) Philos. Trans. R. Soc. B. 2015;370:20140060. doi: 10.1098/rstb.2014.0060. PubMed DOI PMC

European Parliament and of the Council on Minimum Requirements for Water Reuse. 337 Final 2018/0169 (COD) Brussels. [(accessed on 28 May 2018)]; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52018PC0337.

Ding L., Chen L., Ding C., Tao J. Global trends in dam removal and related research: A systematic review based on associated datasets and bibliometric analysis. Chin. Geogr. Sci. 2019;29:1–12. doi: 10.1007/s11769-018-1009-8. DOI

Wohl E., Lane S.N., Wilcox A.C. The science and practice of river restoration. Water Resour. Res. 2015;51:5974–5997. doi: 10.1002/2014WR016874. DOI

Seebens H., Blackburn T.M., Dyer E.E., Genovesi P., Hulme P.E., Jeschke J.M., Pagad S., Pyšek P., Winter M., Arianoutsou M. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:1–9. doi: 10.1038/ncomms14435. PubMed DOI PMC

Vilà M., Basnou C., Gollasch S., Josefsson M., Pergl J., Scalera R. One hundred of the most invasive alien species in Europe. In: Hulme P.E., editor. Handbook of Alien Species in Europe. Springer; Dordrecht, The Netherlands: 2009. pp. 265–268.

Kornis M.S., Mercado-Silva N., Vander Zanden M.J. Twenty years of invasion: A review of round goby Neogobius melanostomus biology, spread and ecological implications. J. Fish Biol. 2012;80:235–285. doi: 10.1111/j.1095-8649.2011.03157.x. PubMed DOI

French J.R., Jude D.J. Diets and diet overlap of nonindigenous gobies and small benthic native fishes co-inhabiting the St. Clair River, Michigan. J. Great Lakes Res. 2001;27:300–311. doi: 10.1016/S0380-1330(01)70645-4. DOI

Almqvist G., Strandmark A.K., Appelberg M. Has the invasive round goby caused new links in Baltic food webs? Environ. Biol. Fishes. 2010;89:79–93. doi: 10.1007/s10641-010-9692-z. DOI

Emde S., Rueckert S., Kochmann J., Knopf K., Sures B., Klimpel S. Nematode eel parasite found inside acanthocephalan cysts-a Trojan horse strategy? Parasite Vector. 2014;7:1–5. PubMed PMC

Pagnucco K.S., Remmal Y., Ricciardi A. An invasive benthic fish magnifies trophic cascades and alters pelagic communities in an experimental freshwater system. Freshw. Sci. 2016;35:654–665. doi: 10.1086/685285. DOI

Janáč M., Šlapanský L., Valová Z., Jurajda P. Downstream drift of round goby (Neogobius melanostomus) and tubenose goby (Proterorhinus semilunaris) in their non-native area. Ecol. Freshw. Fish. 2013;22:430–438. doi: 10.1111/eff.12037. DOI

Šlapanský L., Janáč M., Roche K., Mikl L., Jurajda P. Expansion of round gobies in a non-navigable river system. Limnologica. 2017;67:27–36. doi: 10.1016/j.limno.2017.09.001. DOI

Kornis M.S., Vander Zanden M.J. Forecasting the distribution of the invasive round goby (Neogobius melanostomus) in Wisconsin tributaries to Lake Michigan. Can. J. Fish. Aquat. Sci. 2010;67:553–562. doi: 10.1139/F10-002. DOI

Poos M., Dextrase A.J., Schwalb A.N., Ackerman J.D. Secondary invasion of the round goby into high diversity Great Lakes tributaries and species at risk hotspots: Potential new concerns for endangered freshwater species. Biol. Invasions. 2010;12:1269–1284. doi: 10.1007/s10530-009-9545-x. DOI

Verliin A., Kesler M., Svirgsden R., Taal I., Saks L., Rohtla M., Hubel K., Eschbaum R., Vetemaa M., Saat T. Invasion of round goby to the temperate salmonid streams in the Baltic Sea. Ichthyol. Res. 2017;64:155–158. doi: 10.1007/s10228-016-0537-4. DOI

Meyer J.L., Strayer D.L., Wallace J.B., Eggert S.L., Helfman G.S., Leonard N.E. The contribution of headwater streams to biodiversity in river networks. JAWRA J. Am. Water Resour. 2017;43:86–103. doi: 10.1111/j.1752-1688.2007.00008.x. DOI

Bottcher J.L., Walsworth T.E., Thiede G.P., Budy P., Speas D.W. Frequent usage of tributaries by the endangered fishes of the upper Colorado River basin: Observations from the San Rafael River, Utah. N. Am. J. Fish. Manag. 2013;33:585–594. doi: 10.1080/02755947.2013.785993. DOI

Kuhns L.A., Berg M.B. Benthic invertebrate community responses to round goby (Neogobius melanostomus) and zebra mussel (Dreissena polymorpha) invasion in southern Lake Michigan. J. Great Lakes Res. 1999;25:910–917. doi: 10.1016/S0380-1330(99)70788-4. DOI

Lederer A.M., Janssen J., Reed T., Wolf A. Impacts of the introduced round goby (Apollonia melanostoma) on dreissenids (Dreissena polymorpha and Dreissena bugensis) and on macroinvertebrate community between 2003 and 2006 in the littoral zone of Green Bay, Lake Michigan. J. Great Lakes Res. 2008;34:690–697. doi: 10.1016/S0380-1330(08)71611-3. DOI

Kawaguchi Y., Miyasaka H., Genkai-Kato M., Taniguchi Y., Nakano S. Seasonal change in the gastric evacuation rate of rainbow trout feeding on natural prey. J. Fish Biol. 2007;71:1873–1878. doi: 10.1111/j.1095-8649.2007.01647.x. DOI

Perello M.M., Simon T.P., Thompson H.M., Kane D.D. Feeding ecology of the invasive round goby, Neogobius melanostomus (Pallas, 1814), based on laboratory size preference and field diet in different habitats in the western basin of Lake Erie. Aquat. Invasions. 2015;10:463–474. doi: 10.3391/ai.2015.10.4.09. DOI

Polačik M., Janáč M., Jurajda P., Adámek Z., Ondračková M., Trichkova T., Vassilev M. Invasive gobies in the Danube: Invasion success facilitated by availability and selection of superior food resources. Ecol. Freshw. Fish. 2009;18:640–649. doi: 10.1111/j.1600-0633.2009.00383.x. DOI

Pennuto C., Krakowiak P., Janik C. Seasonal abundance, diet, and energy consumption of round gobies (Neogobius melanostomus) in Lake Erie tributary streams. Ecol. Freshw. Fish. 2010;19:206–215. doi: 10.1111/j.1600-0633.2010.00405.x. DOI

Townsend C.R., Winfield I.J. The application of optimal foraging theory to feeding behaviour in fish. In: Tytler P., Calow P., editors. Fish Energetics: New Perspectives. 1st ed. Croom Helm; Sydney, Australia: 1985. pp. 67–98.

Shemonaev E., Kirilenko E. Features of biology of the round goby Neogobius melanostomus (Perciformes, Gobiidae) in waters of Kuibyshev Reservoir. J. Ichthyol. 2009;49:454–459. doi: 10.1134/S0032945209060046. DOI

Kirilenko E., Shemonaev E. Feeding of the round goby Neogobius melanostomus (Perciformes, Gobiidae) in two Volga reservoirs. J. Ichthyol. 2012;52:291–295. doi: 10.1134/S0032945212020063. DOI

Herberholz J., Sen M.M., Edwards D.H. Escape behavior and escape circuit activation in juvenile crayfish during prey–predator interactions. J. Exp. Biol. 2004;207:1855–1863. doi: 10.1242/jeb.00992. PubMed DOI

Stein R.A. Selective predation, optimal foraging, and the predator-prey interaction between fish and crayfish. Ecology. 1977;58:1237–1253. doi: 10.2307/1935078. DOI

Sandeman R., Sandeman D. Development, growth, and plasticity in the crayfish olfactory system. Microsc. Res. Tech. 2003;60:266–277. doi: 10.1002/jemt.10266. PubMed DOI

Lang F., Govind C., Costello W.J., Greene S.I. Developmental neuroethology: Changes in escape and defensive behavior during growth of the lobster. Science. 1977;197:682–685. doi: 10.1126/science.197.4304.682. PubMed DOI

Kellie S., Greer J., Cooper R.L. Alterations in habituation of the tail flip response in epigean and troglobitic crayfish. J. Exp. Zool. 2001;290:163–176. doi: 10.1002/jez.1046. PubMed DOI

Olden J.D., Poff N.L., Douglas M.R., Douglas M.E., Fausch K.D. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 2004;19:18–24. doi: 10.1016/j.tree.2003.09.010. PubMed DOI

Dick J.T., Platvoet D., Kelly D.W. Predatory impact of the freshwater invader Dikerogammarus villosus (Crustacea: Amphipoda) Can. J. Fish. Aquat. Sci. 2002;59:1078–1084. doi: 10.1139/f02-074. DOI

Dick J.T., Gallagher K., Avlijas S., Clarke H.C., Lewis S.E., Leung S., Minchin D., Caffrey J., Alexander M.E., Maguire C. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biol. Invasions. 2013;15:837–846. doi: 10.1007/s10530-012-0332-8. DOI

Moorhouse T.P., Macdonald D.W. Are invasives worse in freshwater than terrestrial ecosystems? WIREs Water. 2015;2:1–8. doi: 10.1002/wat2.1059. DOI

Solomon M. The natural control of animal populations. J. Anim. Ecol. 1949;18:1–35. doi: 10.2307/1578. DOI

Holling C.S. Some Characteristics of Simple Types of Predation and Parasitism. Can. Entomol. 1959;91:385–398. doi: 10.4039/Ent91385-7. DOI

Murdoch W.W., Oaten A. Predation and population stability. Adv. Ecol. Res. 1975;9:1–131.

Juliano S.A. Nonlinear curve fitting: Predation and functional response curve. In: Scheiner S.M., Gurevitch J., editors. Design and Analysis of Ecological Experiments. 2nd ed. Chapman and Hall; New York, NY, USA: 2001. pp. 178–196.

Bollache L., Dick J.T., Farnsworth K.D., Montgomery W.I. Comparison of the functional responses of invasive and native amphipods. Biol. Lett. 2008;4:166–169. doi: 10.1098/rsbl.2007.0554. PubMed DOI PMC

Alexander M.E., Dick J.T., Weyl O.L., Robinson T.B., Richardson D.M. Existing and emerging high impact invasive species are characterized by higher functional responses than natives. Biol. Lett. 2014;10:20130946. doi: 10.1098/rsbl.2013.0946. PubMed DOI PMC

Laverty C., Green K.D., Dick J.T., Barrios-O’Neill D., Mensink P.J., Médoc V., Spataro T., Caffrey J.M., Lucy F.E., Boets P. Assessing the ecological impacts of invasive species based on their functional responses and abundances. Biol. Invasions. 2017;19:1653–1665. doi: 10.1007/s10530-017-1378-4. DOI

Xu M., Mu X., Dick J.T., Fang M., Gu D., Luo D., Zhang J., Luo J., Hu Y. Comparative functional responses predict the invasiveness and ecological impacts of alien herbivorous snails. PLoS ONE. 2016;11:e0147017. doi: 10.1371/journal.pone.0147017. PubMed DOI PMC

Dubs D.O., Corkum L.D. Behavioral interactions between round gobies (Neogobius melanostomus) and mottled sculpins (Cottus bairdi) J. Great Lakes Res. 1996;22:838–844. doi: 10.1016/S0380-1330(96)71005-5. DOI

Gebauer R., Veselý L., Kouba A., Buřič M., Drozd B. Forecasting impact of existing and emerging invasive gobiids under temperature change using comparative functional responses. Aquat. Invasions. 2018;13:289–297. doi: 10.3391/ai.2018.13.2.09. DOI

Colton T.F. Extending functional response models to include a second prey type: An experimental test. Ecology. 1987;68:900–912. doi: 10.2307/1938361. DOI

Dodd J.A., Dick J.T.A., Alexander M.E., Macneil C., Dunn A.M., Aldridge D.C. Predicting the ecological impacts of a new freshwater invader: Functional responses and prey selectivity of the ‘killer shrimp’, Dikerogammarus villosus, compared to the native Gammarus pulex. Freshw. Biol. 2014;59:337–352. doi: 10.1111/fwb.12268. DOI

Cuthbert R.N., Dickey J.W., McMorrow C., Laverty C., Dick J.T. Resistance is futile: Lack of predator switching and a preference for native prey predict the success of an invasive prey species. R. Soc. Open Sci. 2018;5:180339. doi: 10.1098/rsos.180339. PubMed DOI PMC

Dudová P., Boukal D.S., Klecka J. Prey selectivity and the effect of diet on growth and development of a dragonfly, Sympetrum sanguineum. PeerJ. 2019;7:e7881. doi: 10.7717/peerj.7881. PubMed DOI PMC

South J., McCard M., Khosa D., Mofu M., Madzivanzira T.C., Dick J.T., Weyl O.L. The effect of prey identity and substrate type on the functional response of a globally invasive crayfish. NeoBiota. 2019;52:9. doi: 10.3897/neobiota.52.39245. DOI

Vašek M., Všetičková L., Roche K., Jurajda P. Diet of two invading gobiid species (Proterorhinus semilunaris and Neogobius melanostomus) during the breeding and hatching season: No field evidence of extensive predation on fish eggs and fry. Limnologica. 2014;46:31–36. doi: 10.1016/j.limno.2013.11.003. DOI

Hempel M., Magath V., Neukamm R., Thiel R. Feeding ecology, growth and reproductive biology of round goby Neogobius melanostomus (Pallas, 1814) in the brackish Kiel Canal. Mar. Biodivers. 2018;49:795–807. doi: 10.1007/s12526-018-0854-0. DOI

Hay A.M. Ph.D. Thesis. University of Glasgow; Glasgow, UK: Sep, 1999. Foraging Behaviour of the Ruffe (Gymnocephalus cernuus) and Predator Avoidance by the Freshwater Isopod Asellus aquaticus: Implication for Predator-Prey Interaction.

Hossain M.S., Patoka J., Kouba A., Buřič M. Clonal crayfish as biological model: A review on marbled crayfish. Biologia. 2018;73:841–855. doi: 10.2478/s11756-018-0098-2. DOI

Kouba A., Petrusek A., Kozák P. Continental-wide distribution of crayfish species in Europe: Update and maps. Knowl. Manag. Aquat. Ecosyst. 2017;413:05. doi: 10.1051/kmae/2014007. DOI

Fantinou A., Perdikis D.C., Maselou D., Lambropoulos P. Prey killing without consumption: Does Macrolophus pygmaeus show adaptive foraging behaviour? Biol. Control. 2008;47:187–193. doi: 10.1016/j.biocontrol.2008.08.004. DOI

Rogers D. Random search and insect population models. J. Anim. Ecol. 1972:369–383. doi: 10.2307/3474. DOI

Holling C.S. The Functional Response of Predators to Prey Density and its Role in Mimicry and Population Regulation. Mem. Entomol. Soc. Can. 1965;97:5–60. doi: 10.4039/entm9745fv. DOI

Bolker B. Ecological Models and Data in R. Princeton University Press; Princeton, NJ, USA: 2008. pp. 127–135.

Sentis A., Hemptinne J., Brodeur J. How functional response and productivity modulate intraguild predation. Ecosphere. 2013;4:1–14. doi: 10.1890/ES12-00379.1. DOI

David P., Thebault E., Anneville O., Duyck P.F., Chapuis E., Loeuille N. Impacts of invasive species on food webs: A review of empirical data. Adv. Ecol. Res. 2017;56:1–60.

Mikl L., Adámek Z., Všetičková L., Janáč M., Roche K., Šlapanský L., Jurajda P. Response of benthic macroinvertebrate assemblages to round (Neogobius melanostomus, Pallas 1814) and tubenose (Proterorhinus semilunaris, Heckel 1837) goby predation pressure. Hydrobiologia. 2017;785:219–232. doi: 10.1007/s10750-016-2927-z. DOI

Gebauer R., Divíšek J., Buřič M., Večeřa M., Kouba A., Drozd B. Distribution of alien animal species richness in the Czech Republic. Ecol. Evol. 2018;8:4455–4464. doi: 10.1002/ece3.4008. PubMed DOI PMC

Leeuwen E.V., Jansen V., Bright P. How population dynamics shape the functional response in a one-predator–two-prey system. Ecology. 2007;88:1571–1581. doi: 10.1890/06-1335. PubMed DOI

Dick J.T., Alexander M.E., Jeschke J.M., Ricciardi A., MacIsaac H.J., Robinson T.B., Kumschick S., Weyl O.L., Dunn A.M., Hatcher M.J. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions. 2014;16:735–753. doi: 10.1007/s10530-013-0550-8. DOI

Paton R.A., Gobin J., Rooke A.C., Fox M.G. Population density contributes to the higher functional response of an invasive fish. Biol. Invasions. 2019;21:1737–1749. doi: 10.1007/s10530-019-01931-z. DOI

Alexander M.E., Dick J.T., O’Connor N.E., Haddaway N.R., Farnsworth K.D. Functional responses of the intertidal amphipod Echinogammarus marinus: Effects of prey supply, model selection and habitat complexity. Mar. Ecol. Prog. Ser. 2012;468:191–202. doi: 10.3354/meps09978. DOI

Akre B.G., Johnson D.M. Switching and sigmoid functional response curves by damselfly naiads with alternative prey available. J. Anim. Ecol. 1979:703–720. doi: 10.2307/4191. DOI

Hammill E., Petchey O.L., Anholt B.R. Predator functional response changed by induced defenses in prey. Am. Nat. 2010;176:723–731. doi: 10.1086/657040. PubMed DOI

Gebauer R., Veselý L., Vanina T., Buřič M., Kouba A., Drozd B. Prediction of ecological impact of two alien gobiids in habitat structures of differing complexity. Can. J. Fish. Aquat. Sci. 2019;76:1954–1961. doi: 10.1139/cjfas-2018-0346. DOI

Alexander M., Kaiser H., Weyl O., Dick J. Habitat simplification increases the impact of a freshwater invasive fish. Environ. Biol. Fishes. 2015;98:477–486. doi: 10.1007/s10641-014-0278-z. DOI

Jeschke J.M., Tollrian R. Density-dependent effects of prey defences. Oecologia. 2000;123:391–396. doi: 10.1007/s004420051026. PubMed DOI

Blake M., Hart P. The vulnerability of juvenile signal crayfish to perch and eel predation. Freshw. Biol. 1995;33:233–244. doi: 10.1111/j.1365-2427.1995.tb01164.x. DOI

Webb P. Effect of body form and response threshold on the vulnerability of four species of teleost prey attacked by largemouth bass (Micropterus salmoides) Can. J. Fish. Aquat. Sci. 1986;43:763–771. doi: 10.1139/f86-094. DOI

Sih A., Christensen B. Optimal diet theory: When does it work, and when and why does it fail? Anim. Behav. 2001;61:379–390. doi: 10.1006/anbe.2000.1592. DOI

Lawton J., Beddington J., Bonser R. Switching in invertebrate predators. In: Usher M.B., Williamson M.H., editors. Ecological Stability. Chapman and Hall; London, UK: 1974. pp. 141–158.

Kipp R., Hébert I., Lacharité M., Ricciardi A. Impacts of predation by the Eurasian round goby (Neogobius melanostomus) on molluscs in the upper St. Lawrence River. J. Great Lakes Res. 2012;38:78–89. doi: 10.1016/j.jglr.2011.11.012. DOI

Bhagat Y., Ruetz C.R., III, Akins A.L. Differential habitat use by the round goby (Neogobius melanostomus) and Dreissena spp. in coastal habitats of eastern Lake Michigan. J. Great Lakes Res. 2015;41:1087–1093. doi: 10.1016/j.jglr.2015.08.005. DOI

Tytler P., Calow P. Fish Energetics: New Perspectives. Croom Helm; Sydney, Australia: 1985. p. 348.

Hart P., Ison S. The influence of prey size and abundance, and individual phenotype on prey choice by the three-spined stickleback, Gasterosteus aculeatus L. J. Fish Biol. 1991;38:359–372. doi: 10.1111/j.1095-8649.1991.tb03126.x. DOI

Kislalioglu M., Gibson R. Prey ‘handling time’and its importance in food selection by the 15-spined stickleback, Spinachia spinachia (L.) J. Exp. Mar. Biol. Ecol. 1976;25:151–158. doi: 10.1016/0022-0981(76)90016-2. DOI

Diggins T.P., Kaur J., Chakraborti R.K., DePinto J.V. Diet choice by the exotic round goby (Neogobius melanostomus) as influenced by prey motility and environmental complexity. J. Great Lakes Res. 2002;28:411–420. doi: 10.1016/S0380-1330(02)70594-7. DOI

Sohel S., Mattila J., Lindström K. Effects of turbidity on prey choice of three-spined stickleback Gasterosteus aculeatus. Mar. Ecol. Prog. Ser. 2017;566:159–167. doi: 10.3354/meps12014. DOI

Błońska D., Grabowska J., Kobak J., Jermacz Ł., Bącela-Spychalska K. Feeding preferences of an invasive Ponto-Caspian goby for native and non-native gammarid prey. Freshw. Biol. 2015;60:2187–2195. doi: 10.1111/fwb.12647. DOI

Beggel S., Brandner J., Cerwenka A., Geist J. Synergistic impacts by an invasive amphipod and an invasive fish explain native gammarid extinction. BMC Ecol. 2016;16:32. doi: 10.1186/s12898-016-0088-6. PubMed DOI PMC

Brandner J., Auerswald K., Cerwenka A.F., Schliewen U.K., Geist J. Comparative feeding ecology of invasive Ponto-Caspian gobies. Hydrobiologia. 2013;703:113–131. doi: 10.1007/s10750-012-1349-9. DOI

Carman S.M., Janssen J., Jude D.J., Berg M.B. Diel interactions between prey behaviour and feeding in an invasive fish, the round goby, in a North American river. Freshw. Biol. 2006;51:742–755. doi: 10.1111/j.1365-2427.2006.01527.x. DOI

Siepielski A.M., Wang J., Prince G. Nonconsumptive predator-driven mortality causes natural selection on prey. Evolution. 2014;68:696–704. doi: 10.1111/evo.12294. PubMed DOI

Preisser E.L., Bolnick D.I., Benard M.F. Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology. 2005;86:501–509. doi: 10.1890/04-0719. DOI

Johnson D.M., Akre B.G., Crowley P.H. Modeling arthropod predation: Wasteful killing by damselfly naiads. Ecology. 1975;56:1081–1093. doi: 10.2307/1936148. DOI

Veselý L., Boukal D.S., Buřič M., Kozák P., Kouba A., Sentis A. Effects of prey density, temperature and predator diversity on nonconsumptive predator-driven mortality in a freshwater food web. Sci. Rep. 2017;7:18075. doi: 10.1038/s41598-017-17998-4. PubMed DOI PMC

Kruuk H. Surplus killing by carnivores. J. Zool. 1972;166:233–244. doi: 10.1111/j.1469-7998.1972.tb04087.x. DOI

Jedrzejewska B., Jedrzejewski W. Seasonal surplus killing as hunting strategy of the weasel Mustela nivalis-test of a hypothesis. Acta Theriol. 1989;34:347–360. doi: 10.4098/AT.arch.89-34. DOI

Short J., Kinnear J., Robley A. Surplus killing by introduced predators in Australia—Evidence for ineffective anti-predator adaptations in native prey species? Biol. Conserv. 2002;103:283–301. doi: 10.1016/S0006-3207(01)00139-2. DOI

McKee M., Wrona F., Scrimgeour G., Culp J. Importance of consumptive and non-consumptive prey mortality in a coupled predator–prey system. Freshw. Biol. 1997;38:193–201. doi: 10.1046/j.1365-2427.1997.00205.x. DOI

Holling C.S. The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 1966;98:5–86. doi: 10.4039/entm9848fv. DOI

Lee V.A., Johnson T.B. Development of a bioenergetics model for the round goby (Neogobius melanostomus) J. Great Lakes Res. 2005;31:125–134. doi: 10.1016/S0380-1330(05)70244-6. DOI

Church K., Iacarella J.C., Ricciardi A. Aggressive interactions between two invasive species: The round goby (Neogobius melanostomus) and the spinycheek crayfish (Orconectes limosus) Biol. Invasions. 2017;19:425–441. doi: 10.1007/s10530-016-1288-x. DOI

Bovy H.C., Barrios-O’Neill D., Emmerson M.C., Aldridge D.C., Dick J.T. Predicting the predatory impacts of the “demon shrimp” Dikerogammarus haemobaphes, on native and previously introduced species. Biol. Invasions. 2015;17:597–607. doi: 10.1007/s10530-014-0751-9. DOI

Martin P. Parthenogenesis: Mechanisms, evolution, and its relevance to the role of marbled crayfish as model organism and potential invader. In: Kawai T., Faulkes Z., Scholtz G., editors. Freshwater Crayfish: A Global Overview. CRC Press; Boca Raton, FL, USA: 2015. pp. 63–82.

Holdich D., Reynolds J., Souty-Grosset C., Sibley P. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Managt. Aquat. Ecosyst. 2009;11:394–395. doi: 10.1051/kmae/2009025. DOI

Pennuto C., Rupprecht S. Upstream range expansion by invasive round gobies: Is functional morphology important? Aquat. Ecol. 2016;50:45–57. doi: 10.1007/s10452-015-9551-2. DOI

Kornis M.S., Weidel B.C., Vander Zanden M.J. Divergent life histories of invasive round gobies (Neogobius melanostomus) in Lake Michigan and its tributaries. Ecol. Freshw. Fish. 2017;26:563–574. doi: 10.1111/eff.12300. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...